Расследование и предупреждение техногенных катастроф. Научный детектив | страница 11
§ 5. Научное расследование причин катастроф. Открытие «особых» объектов и систем
Научным открытием, позволившим найти причины многих техногенных катастроф (в том числе, возможно, и катастрофы аквапарка «Трансвааль»), стало открытие «особых» объектов и «особых» математических моделей, которые эти объекты описывают. «Особые» объекты — это те, для которых обычные и, вроде бы, многократно проверенные методы проектирования и расчета не дают правильного результата. «Особые» объекты ведут себя совсем не так, как предусмотрено самым добросовестным проектом и расчетом и могут, например, неожиданно обрушиться на головы беззаботных посетителей.
Именно «особым» объектом оказался аквапарк «Трансвааль» (точнее — здание аквапарка). Именно встреча с «особым» техническим объектом стала, возможно, несчастьем для жертв аварии. Она же стала бедой для Н. Канчели и А. Воронина.
«Особые» объекты и «особые» математические модели были открыты и исследованы в Санкт-Петербургском государственном университете (СПбГУ) в 1987—2000 годах. Там же (и в те же годы) были открыты неожиданные свойства эквивалентных преобразований. Эти открытия (и их следствия) один из исследователей назвал «одним из важнейших открытий конца двадцатого века, возможно, даже самым важным»!
Важность открытий, сделанных в СПбГУ, заключается в том, что эквивалентные преобразования (их называют еще равносильными преобразованиями) применяются практически во всех инженерных и экономических расчетах, изучаются в средней школе.
Даже сегодняшние «гуманитарии», наверное, помнят, как в средней школе им рассказывали о простейших эквивалентных (равносильных) преобразованиях:
1. Перенос членов из левой части в правую и наоборот с изменением знака;
2. Умножение всех членов на число, не равное нулю;
3. Подстановка — т. е. замена любого члена на член, равный ему.
Основное свойство эквивалентных преобразований — они не изменяют решений уравнений. Но при этом очень долгое время (вплоть до 1987 года) никто не замечал, что эквивалентные преобразования могут изменять некоторые важные свойства решений. Одно из важнейших свойств — при малых изменениях исходных данных решение должно изменяться мало. Такое свойство решений называют иногда — корректностью, иногда — параметрической устойчивостью. Это свойство важно потому, что на практике все исходные данные проектирования и расчета известны всегда с ограниченной, конечной точностью, да еще к тому же часто немного изменяются с течением времени.