Энергия и жизнь | страница 48
К настоящему времени проведено множество модельных экспериментов по химической эволюции. Было обнаружено, что при воздействии разных видов энергии на газообразный углерод, азот, воду, водород, входящие в состав примитивной атмосферы, вначале образуются реакционноспособные промежуточные продукты. А они затем дают множество биологических или близких к биологическим мономеров и некоторые полимеры. Как подчеркивает К. Фолсом, автор книги «Происхождение жизни» [М., 1982], для суждения о процессах на примитивной Земле необходимо рассматривать не отдельно взятый эксперимент, а всю их совокупность. Первые циклы могли иметь такую структуру:
Направление реакций определялось притоком энергии в зависимости от места и времени (например, времени суток). Можно считать, что проблема синтеза мономеров не заключает в себе каких-либо фундаментальных трудностей или трудностей философского характера.
При синтезе полимеров необходимы одновременно приток энергии и отщепление воды. Как и при синтезе мономеров, проблема небиологического синтеза полимеров не имеет принципиальных трудностей для понимания, хотя некоторые затруднения здесь имеются (к примеру, для конденсации лучше всего подходят безводные условия, в которых очень сложно представить ход эволюции живых систем).
Следующий этап химической эволюции — развитие фазово-обособленных систем. И здесь модельные эксперименты дают нам большое разнообразие возможных вариантов. Это — коацерватные капли Бунгенберг-де-Йонга и Опарина, пузырьки Голдейкра, микросферы Фокса и т. д. Отметим очень важное свойство фазовой обособленности или наличия границ в замкнутой системе. Полимеры, возникающие в растворах, не могут достичь высоких концентраций, в частности, из-за протекания обратных реакций. А полимеризация в ограниченном, выделенном объеме снижает в нем концентрацию мономеров и, соответственно, понижает осмотическое давление. Такое снижение приводит к перекачке мономеров из окружающей среды. И таким образом пробионты способны «высасывать» органику из первичного бульона, а значит, расти и почковаться или делиться. По образному выражению профессора Б. М. Медникова, [1980, с. 425], «не жизнь породила клетку, а клетка возникла раньше самой жизни».
Действительно, можно выделить ряд свойств пробионтов, чтобы они могли стать прародителями первичных живых клеток: способность к обмену с окружающей средой (проницаемая мембрана); способность к росту, увеличению объема; способность к делению и почкованию. Особого внимания заслуживает способность пробионтов к первичному метаболизму, т. е. к протеканию специфических синтетических и биохимических реакций. Это приводит к тому, что локальные условия в них сильно отличаются от условий внешней среды. Например, коацерваты Опарина, состоящие из полинуклеотида и белка, при добавлении полинуклеотид-фосфорилазы в присутствии АДФ способны синтезировать полинуклеотид-полиадениловую кислоту. При этом капли растут в размере и способны к механическому разделению.