Высший замысел | страница 29
Хотя некоторые могли сделать вывод, что Ньютон был не прав, говоря, что свет — это не волна, но все же он был прав, говоря, что свет может действовать так, как если бы он состоял из частиц. Сегодня мы называем эти частицы фотонами. Как мы состоим из большого числа атомов, так и свет, который мы видим в повседневной жизни, состоит из великого множества фотонов, — даже одноваттный ночник излучает миллиард миллиардов фотонов в секунду. Одиночные фотоны обычно незаметны, но в лаборатории можно создать весьма слабый луч света, состоящий из потока одиночных фотонов, которые мы сможем обнаруживать индивидуально, точно так же, как мы обнаруживаем одиночные электроны или бакиболы. И мы можем повторить опыт Юнга, используя настолько разреженный луч, что фотоны будут достигать преграды поодиночке, с интервалом в несколько секунд. Если мы сделаем это, а потом сложим все отдельные попадания, зафиксированные на расположенном за преградой экране, то обнаружим, что вместе они создают точно такой же интерференционный узор, какой возник бы в том случае, если бы мы провели опыт Дэвиссона — Джермера, но обстреливали бы экран электронами (или бакиболами) поштучно. Для физиков это было потрясающим открытием: если отдельные частицы интерферируют сами с собой, то волновая природа света является свойством не только луча, или большого скопления фотонов, но и отдельной частицы.
Опыт Юнга. Узор, возникающий в эксперименте с бакиболами, был известен из волновой теории света.
Еще одним из основных принципов квантовой физики является принцип неопределенности, который в 1926 году сформулировал немецкий физик Вернер Гейзенберг (1901–1976). Принцип неопределенности говорит о том, что существуют пределы наших возможностей одновременного измерения определенных величин, таких как положение и скорость частицы. Например, согласно принципу неопределенности, если вы умножаете неопределенность положения частицы на неопределенность ее импульса (произведения массы на скорость), то результат не может бьггь меньше некой фиксированной величины, которую называют постоянной Планка. Это звучит как сложная скороговорка, но суть ее может быть выражена просто: чем точнее вы измеряете скорость, тем менее точно можете измерить положение, и наоборот. Например, если вы вдвое уменьшаете неопределенность положения, то вам придется вдвое увеличить неопределенность скорости. Также важно отметить, что по сравнению с обычными единицами измерения, такими как метры, килограммы и секунды, постоянная Планка очень мала. Действительно, если выразить ее в этих единицах, то значение составит примерно 6/10 000 000 000 000 000 000 000 000 000 000 000. В результате, если вы засечете местоположение макроскопического объекта, например футбольного мяча массой в треть килограмма, с точностью до одного миллиметра в каждом направлении, мы все еще сможем измерить его скорость с точностью гораздо большей, чем одна миллиардная миллиардной от одной миллиардной километра в час. Это потому, что измеренная в таких единицах масса футбольного мяча равна 1/3, а неопределенность положения 1/1000. Ни того ни другого не достаточно, чтобы привести ко множеству нулей в постоянной Планка, так что эта роль достается неопределенности в скорости. Но в тех же единицах масса электрона составляет 0,000 000 000 000 000 000 000 000 000 001, поэтому с электронами дело обстоит совершенно по-другому. Если мы измеряем положение электрона с точностью, примерно соответствующей размеру атома, то принцип неопределенности устанавливает, что мы не можем узнать скорость электрона более точно, чем примерно плюс-минус 1000 километров в секунду, что уж никак не назовешь очень точным.