Новый ум короля: О компьютерах, мышлении и законах физики | страница 51
В представлении Тьюринга «лента» состоит из бесконечной в обоих направлениях линейной последовательности квадратов. Каждый квадрат либо пуст, либо помечен[41]. Использование помеченных и пустых квадратов означает, что мы допускаем разбиение нашего «окружения» (т. е. ленты) на части и возможность его описания множеством дискретных элементов (в противоположность непрерывному описанию). Это представляется вполне разумным, если мы хотим, чтобы наше устройство работало надежно и совершенно определенным образом. В силу используемой математической идеализации мы допускаем (потенциальную) бесконечность «окружения», однако в каждом конкретном случае входные данные, промежуточные вычисления и окончательный результат всегда должны быть конечными. Таким образом, хотя лента и имеет бесконечную длину, на ней должно быть конечное число непустых квадратов. Другими словами, и с той, и с другой стороны от устройства найдутся квадратики, после которых лента будет абсолютно пустой. Мы обозначим пустые квадраты символом «0», а помеченные — символом «1», например:
Нам нужно, чтобы устройство «считывало» информацию с ленты. Мы будем считать, что оно считывает по одному квадрату за раз и смещается после этого ровно на один квадрат влево или вправо. При этом мы не утрачиваем общности рассуждений: устройство, которое читает за один раз n квадратов или перемещается на k квадратов, легко моделируется устройством, указанным выше. Передвижение на k квадратов можно построить из к перемещений по одному квадрату, а считывание n квадратов за один прием сводится к запоминанию результатов n однократных считываний.
Что именно может делать такое устройство? Каким образом в самом общем случае могло бы функционировать устройство, названное нами «механическим»? Вспомним, что число внутренних состояний нашего устройства должно быть конечным. Все, что нам надо иметь в виду помимо этого — это то, что поведение нашего устройства полностью определяется его внутренним состоянием и входными данными. Входные данные мы упростили до двух символов — «0» и «1». При заданном начальном состоянии и таких входных данных устройство должно работать совершенно определенным образом: оно переходит в новое состояние (или остается в прежнем), заменяет считанный символ 0 или 1 тем же или другим символом 1 или 0, передвигается на один квадрат вправо или влево, и наконец, оно решает, продолжить вычисления или же закончить их и остановиться.