Удовольствие от Х. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мирe | страница 65
Представьте себе, что популярный новый фильм показывают в местном кинотеатре. Это романтическая комедия, и сотни пар (намного больше, чем может вместить кинотеатр) выстроились в кассу в очередь за билетами, хотя и отчаялись попасть внутрь. Как только счастливая пара получает билеты, она пробирается в зал и ищет два места рядом. Для простоты предположим, что влюбленные выбирают эти места наугад, там, где есть свободные. Другими словами, они не заботятся о том, будут ли сидеть близко к экрану или далеко от него, на проходе или в середине ряда. Пока они рядом друг с другом, они счастливы.
Допустим, ни одна пара не будет пересаживаться, чтобы освободить место для другой. После того как молодые люди уселись, они никуда не передвигаются. Полное отсутствие вежливости. Зная это, кассир прекращает продавать билеты после того, как остается только одно свободное место. В противном случае начались бы драки.
Сначала, пока в кинотеатре довольно пусто, не возникает никаких проблем. Каждая пара легко находит два места рядом. Но через какое-то время остаются только одиночные места и одиночные промежутки между парами, которые двое не хотят занимать. В реальной жизни люди часто намеренно создают такие промежутки: чтобы положить пальто или не опираться на один подлокотник с неприятным незнакомцем. Но в нашей модели эти промежутки случайны.
Вопрос: если больше не осталось мест для пар, сколько свободных мест еще есть в кинотеатре?
Ответ следующий: оказывается, в кинотеатре с большим залом (когда в ряду много мест) доля пустующих мест примерно равна
что приближается к 13,5%72.
Хотя сам расчет слишком сложный для того, чтобы его здесь привести, легко заметить, что 13,5% находится в правой части диапазона между двумя крайними значениями. Если бы все пары сидели вплотную друг к другу, пустующих мест не было бы.
Тем не менее, если бы они расположились максимально нерационально, то есть всегда оставляя возле себя свободное место (и оставив свободное место в каждом ряду у прохода: на одном или на другом конце ряда, как показано на рисунке ниже), то пустовала бы одна треть мест, потому что каждая пара заняла бы три места: два для себя и одно промежуточное.
Догадываясь, что произвольный выбор должен лежать где-то между идеально рациональным и совершенно неэффективным, иначе говоря, быть средним между 0 и