Удовольствие от Х. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мирe | страница 57
Как и наклоны, производные могут быть положительными, отрицательными или равными 0, что указывает на то, что нечто увеличивается, уменьшается или выравнивается. Рассмотрим летящего по воздуху Майкла Джордана, зависшего над корзиной за секунду до одного из своих феноменальных бросков.
Сразу после прыжка его вертикальная скорость (скорость его подъема, изменяющаяся во времени [кстати, еще одна производная]) будет положительной, потому что он поднимается вверх. Высота подъема спортсмена растет. На пути вниз эта производная отрицательная. В самой верхней точке прыжка, где кажется, что Джордан завис в воздухе, а его подъем прекратился, производная равна 0. В этом смысле он действительно висит.
Здесь действует еще один общий принцип: предметы всегда изменяются медленнее в верхней и нижней точках. В Итаке это особенно заметно. В самое темное время зимы дни не только нещадно коротки, но и очень медленно растет продолжительность светового дня. Как только начинается весна, дни быстро удлиняются. Все это вполне объяснимо. Изменения наиболее вялые в крайних точках именно потому, что производная в них равна нулю. В этом случае процессы моментально успокаиваются.
Это свойство нулевой производной проявляется на пиках и во впадинах и лежит в основе ряда практичных способов применения производных, позволяющих выяснить, где функция достигает своего максимума или минимума. Вопрос о максимуме или минимуме возникает, когда мы ищем самый лучший, или самый дешевый, или самый быстрый способ сделать что-либо.
Господин Жоффрей, мой школьный учитель, который вел у нас вводный курс исчислений63, умел талантливо преподнести нам условие задач на определение максимума и минимума. Однажды он быстро вбежал в класс и начал рассказывать о своем путешествии через заснеженное поле. Видимо, ветер в одном месте поля намел много снега, покрыв его тяжелым покрывалом, из-за чего учителю пришлось идти гораздо медленнее, а остальная часть поля была чистой, и он шагал по нему легко. В этой ситуации он спросил себя, по какому пути должен идти пешеход, чтобы добраться из пункта А в пункт B как можно быстрее.