Удовольствие от Х. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мирe | страница 42
При такой интерпретации наклоненный квадрат будет свободным пространством в середине головоломки. Оставшуюся часть внутри рамки занимают пазлы. Попробуем их подвигать. Конечно, что бы мы ни делали, мы никогда не сможем изменить общую площадь свободного пространства внутри рамки — оно всегда будет областью, лежащей вне пазлов.
После небольшого мозгового штурма переставим пазлы таким образом:
Пустое пространство неожиданно принимает форму среднего и малого квадрата, которые мы ищем. А так как общая площадь свободного пространства неизменна, вот мы и доказали теорему Пифагора!
Это доказательство дает гораздо больше, чем уверенность в правильности теоремы, — оно ее разъясняет. И именно это делает его элегантным.
Для сравнения рассмотрим еще одно доказательство. Не менее знаменитое, и, пожалуй, самое простое из тех, где не используются площади.
Как и прежде, возьмем прямоугольный треугольник со сторонами a, b и гипотенузой с, как показано ниже на рисунке слева.
Далее (как что-то подсказывает нам по божественному вдохновению или благодаря собственной гениальности) проведем перпендикуляр вниз от гипотенузы к противоположному углу, как это сделано в правом треугольнике.
Эта маленькая умная «бестия» внутри исходного треугольника создает еще два меньших треугольника. Легко доказать, что все они подобны, то есть у них одинаковая форма, но различные размеры. Что, в свою очередь, означает, что длина их соответствующих сторон имеет подобные пропорции. Это можно записать в виде следующей системы равенств:
Мы также знаем, что
c = d + e,
поскольку построенный перпендикуляр делит гипотенузу c на два меньших отрезка d и e.
В этот момент не стыдно немного растеряться или просто не знать, что делать дальше. Мы в трясине из пяти представленных выше равенств и пытаемся привести их к равенству
a>2 + b>2 = c>2.
Попробуйте сделать это за несколько минут. Вы обнаружите, что два равенства излишни. Следовательно, это неэлегантное доказательство. В изящном доказательстве не должно быть ничего лишнего. Конечно, все крепки задним умом, но ведь сначала мы ничего не знали об этих равенствах. Что, впрочем, не делает нашу мину при плохой игре лучше.
Тем не менее, манипулируя тремя «нелишними» равенствами, можно вывести требуемое соотношение. (См. пропущенные шаги доказательства в примечании 46 в конце книги.)
Согласны ли вы с тем, что с эстетической точки зрения этот вариант уступает первому? Конечно, он приводит к доказательству. Но кто пригласил на вечеринку всю эту алгебру? Ведь это геометрическая теорема.