Нобелевские премии. Ученые и открытия | страница 72
Выводы Ли и Янга базировались на данных распада K-мезонов. Решающая информация о так называемых тау- и тета-частицах, указывающая на их идентичность, была получена в 1956 г. Вэлом Фитчем из Принстонского университета. В 1961 г. этот же исследователь открыл нейтральный K-мезон, или, точнее, его античастицу. Эти два микрообъекта отличаются только одним из квантовых чисел — странностью. Согласно теории, получаемый пучок нейтральных K-мезонов должен состоять приблизительно из одинакового числа частиц и античастиц. В то время как имеющие малую продолжительность жизни нейтральные K-мезоны быстро распадаются на два пи-мезона, это, согласно закону сохранения комбинированной четности, не распространяется на их античастицы. Эксперименты такого рода были проведены в 1964 г. в Принстоне Вэлом Фитчем и Джеймсом Кронином. Поначалу экспериментальные данные согласовались с теорией, но затем в 0,2% случаев наблюдался распад более устойчивых античастиц.
Это было катастрофой для теории. Последний принцип симметрии— закон комбинированной четности — оказался нарушенным. Результаты Кронина и Фитча были оглашены в августе 1964 г. на XII Международной конференции по физике высоких энергий, происходившей в Дубне. Впоследствии были обнаружены и другие процессы, где нарушается пространственно-зарядовая симметрия. Стало очевидным, что открыто некое фундаментальное свойство слабых взаимодействий.
В соответствии с современными теориями, объясняющими электромагнитные и слабые взаимодействия обменом фотонами и бозонами, нарушение симметрии обусловлено именно последними (квантами слабого взаимодействия). Такое нарушение не могло получиться в системе из двух пар кварков (ud и sc), и поэтому в 1973 г. Кобаяси и Маскава предположили существование третьей пары кварков (bt). В 1975 г. был открыт тяжелый тау-лептон, состоящий из этой пары кварков, а в 1977 г. — ипсилон-мезон (У), состоящий из двух связанных b-кварков. Шестой t-кварк открыт летом 1984 г. в ЦЕРН той же группой исследователей, которая обнаружила промежуточные векторные бозоны. Он был замечен при распаде W-частиц.
Современная физика, ставящая своей целью объяснить все многообразие явлений в рамках одной теории, уже нашла взаимосвязь между нарушениями комбинированной четности и эволюцией Вселенной. Астрофизические исследования показывают, что во Вселенной практически нет антивещества. Встречающиеся единичные античастицы, по всей вероятности, имеют вторичное происхождение. Предполагается, однако, что на очень ранних стадиях возникновения Вселенной, когда только образовались частицы, число нуклонов и антинуклонов было почти одинаковым. Из этого «почти» и возник мир, в котором мы живем. Частицы и античастицы аннигилировали, в результате чего возникло излучение — фотоны. Если бы число античастиц и частиц было одинаковым, то во Вселенной сегодня не было бы вещества, а только одни фотоны. К счастью, мир «с самого начала» был слегка асимметричен. В свете подобных представлений приходится признать нарушение комбинированной четности.