Гравитация. От хрустальных сфер до кротовых нор | страница 33
Рене Декарт «Начала философии»
Чтобы прийти к замечательным выводам, ставшими впоследствии законами механики, Галилей, Ньютон и многие другие учёные, экспериментируя с материальными телами на Земле и изучая движение небесных тел, должны были производить измерения. Определяли размеры тел и расстояния между ними (протяжённости), положения тел и пройденные ими расстояния при движении. Особое место в механике занимает изучение последовательности событий, продолжительности событий (длительности), частоты возникновения событий. Все это осуществляется путём измерений момента каждого события по часам.
Говоря о пространственных измерениях, нельзя не вспомнить Декарта и ферма, внёсших неоценимый вклад в систематизацию этого процесса. Декарт был убеждённым материалистом, а одним из главных свойств материальных вещей считал протяжённость, которая может проявляться по–разному. Декарт отрицал существование пустого пространства на том основании, что везде, где есть протяжённость, которую можно измерить, есть материя. Один из его тезисов: «В мире нет ничего, кроме движущейся материи различных видов. Материя состоит из элементарных частиц, локальное взаимодействие которых и производит все природные явления». Эти философские убеждения повлияли на выбор проблем, которые ему было интересно исследовать. Он стал одним из создателей аналитической геометрии, которую разрабатывал одновременно с французским математиком Пьером Ферма (1601–1665). Геометрические задачи стало возможно исследовать как алгебраические с помощью метода координат.
По мнению историков, Ферма, как математик, был более одарённым, чем Декарт. Он восхищался греками и был продолжателем их традиций. Ферма задавал положение точки на плоскости с помощью значений длин двух отрезков — абсциссы и ординаты, а кривая определялась уравнением, связывающим длины этих отрезков. Эта идея активно использовалась древними греками. Архимед, например, описывает конические сечения через их «симптомы», — пропорции, связывающие абсциссы и ординаты точек. Однако древние греки применяли лишь словесное описание пропорций, а Ферма представляет свои формулировки в виде уравнений, хотя тоже не символизированных. Это, конечно, значительно облегчает анализ проблем, но подход остаётся чисто геометрическим, пространственным.
Ферма изложил результаты своих исследования в трактате «Введение в изучение плоских и телесных мест». Книга была опубликована только в 1679 году, уже после его смерти, хотя в основном французские математики узнали о её идеях и выводах значительно раньше, в 1630–х годах. Дело в том, что Ферма был юристом, и массу времени у него отнимала служба Параллельно он занимался математикой и вёл активную переписку с учёными того времени, его результаты были известны всему сообществу. Известно, что был он очень доброжелательным в своих письмах, иногда одно и то же объяснял много раз с разных позиций, не реагируя на возможно недоброжелательный тон оппонента.