Нанонауки. Невидимая революция | страница 62
Тем временем профессор химии в Университете Райса в Техасе Джеймс Тур занялся изучением молекулы-коляски. Он синтезировал нанокарету — молекулу длиной 1,5 нм. И снабдил экипаж четырьмя колесами — каждое колесо представляло собой молекулу фуллерена. Колесико крутилось на молекулярной оси — такой же, что у молекулярных тачек. И карета двигалась! Можно было ее подтолкнуть иглой туннельного микроскопа, но, оказалось, что есть способ куда проще: профессор нагревал золотую поверхность, на которой стояла молекулярная карета: тепловой энергии вполне хватало для самопроизвольного перемещения кареты. Выглядело это так, что карета беспорядочно передвигается по поверхности — в общем, слоняется, как попало. Хорошо, конечно, что хоть как-то движется, но вот колеса-то у нее не крутятся! О вращении колес можно судить по силе тока, протекающего через иглу туннельного микроскопа: если внутренняя структура молекулы меняется, то будет меняться и ток, и по характеру этих изменений видно, крутятся колеса или же тепло просто тащит карету невесть куда, а колеса так и остаются неподвижными. Просто скользят по поверхности — наверное, для фуллереновых колес золотая гладь оказалась слишком скользкой.
Трудности трудностями, но, как известно, прогресс неудержим, и потому можно не сомневаться: рано или поздно, но наноколеса наноэкипажей завертятся. И наверняка сразу же на повестку дня встанут другие требования: большей автономности молекулярных повозок, например. В смысле: а давайте поставим на тележку двигатель. Джеймс Тур уже поставил на свою молекулу-карету маленькую защелку — посередине рамы. Если на эту защелку попадет луч света, она опустится на поверхность и станет опорой, отталкиваясь от которой карете будет легче начать движение. Пока что эта молекула не совсем готова — работы над ее синтезированием продолжаются. А в лаборатории в Тулузе Гвеналь Рапенн и Жан-Пьер Лоне придумали и синтезировали молекулу-моторчик — диаметр ротора этого двигателя меньше 2 нм. Теперь они рассчитывают мощность своего движка и придумывают для него коробку передач — чтобы можно было встроить его в молекулу-карету.
Тем временем, точнее, в 1997 году, Джим Гимзуски построил маленькие молекулярные счеты, собирая их из присоединяемых одна за одной молекул фуллерена. Джим располагал фуллереновый ряд вдоль ступеньки высотой в один атом — этот слой естественным образом возник на поверхности золотого кристалла. В 2002 году Дон Эйглер построил из сотни молекул моноксида углерода, которые он перемещал иглой туннельного микроскопа, логические вентили, выполнявшие функции «ИЛИ» и «И». У каждого вентиля было два входа, на которые поступали сигналы со значениями 0 или 1, и один выход. Если на одном из входов появится единица (1), то и на выходе схемы «ИЛИ» будет единица, а вот на выходе схемы «И» единица появится только тогда, когда на оба ее входа поступят единичные сигналы. Дон Эйглер построил из своих молекул два ряда, соприкасающиеся в одной точке поверхности. Эти два ряда служат двумя входами молекулярного логического вентиля, а каждая молекула похожа на косточку домино, которая или стоит, или упала (1 или 0). Если опрокинуть первую с краю молекулу, то возникает хорошо известный «эффект домино»: опрокидывание распространяется вдоль линейки (опрокинутая косточка обрушивает свою соседку). Так что состояние всего ряда может быть только одинаковым: или нулевым, или единичным, и соответственно и последняя косточка ряда — это выход вентиля — тоже опрокидывается или остается в исходном положении, чем и моделируется двоичность состояний (0 или 1). Вот как работает логическая схема, собранная из молекул. Однако схема может выполнить логическое сложение (ИЛИ) или логическое умножение (И) только один раз. Чтобы повторить логическую операцию, необходимо вернуть вентиль в исходное состояние, а это означает, что снова приходится выстраивать ряд из молекул «вручную» (пусть и с помощью иглы микроскопа): все косточки домино упали, и теперь надо их поднять. Поэтому Дон Эйглер и называет свое устройство не процессором, а счетами — операция выполняется механически.