Городомля. Немецкие исследователи ракет в России | страница 55
Тем самым, для достижения дальности полета надо было использовать целую батарею ракет. Или, все-таки, это препятствие можно преодолеть? Я подумал, что до сих пор рассчитывал повышение температуры только воздуха, но, чтобы тепло от воздуха перешло к ракете, требуется определенное время. А ведь время полета ракеты очень непродолжительно. Активная фаза движения к началу восходящей ветви траектории полета, в то время, когда еще работает двигатель, длится не более одной минуты. Вполне возможно, что температура в оболочке в течение такого короткого времени, повышается не так сильно. Я должен был попытаться рассчитать разогрев оболочки при сверхзвуковом полете. Мне было неизвестно, делал ли кто-нибудь такие расчеты раньше. В Городомле в нашем распоряжении были только те книги, которые мы взяли с собой. Я нашел в одной из моих тетрадей старую работу Геттингенского теоретика Адольфа Буземанна, который рассчитал коэффициент теплопередачи от воздуха к стенке при высокой скорости полета для ламинарных пограничных слоев. Я применил этот расчет для турбулентного пограничного слоя, полагая, что он присутствует при полете ракеты. Я использовал работу гидроаэродинамика Теодора фон Кармана, который рассчитал теплопередачу на основании аналогии между элементарными уравнениями трения и теплопереноса. Результаты моего расчета показали, что в течение полета достигаются температуры, которые несколько ниже температуры в передней критической точке. Для нашей ракеты я мог из расчета баллистической траектории полета использовать мгновенные значения скорости и плотности воздуха и численным методом решить дифференциальное уравнение теплоотдачи. Результат расчета позволил увидеть, что тепло передается довольно медленно и что температура всей оболочки все же остается гораздо ниже температуры в передней критической точке. На восходящей ветви траектории полета она имеет более низкие значения, чем на нисходящей вблизи цели. Но и на восходящей ветви температура корпуса достигает такого значения, при котором обычные листы легких металлов, применяемые в авиастроении, могут потерять свою прочность. Значит, надо применять листовую сталь. Расчет показал, что теплообмен увеличивается с ростом произведения плотности воздуха на скорость полета. Вследствие этого разница между теплообменом на восходящей и нисходящей ветви траектории полета очень большая. При подъеме высокая скорость достигается на большой высоте, там плотность воздуха мала. Поэтому повышение температуры — умеренное. На нисходящей ветви, то есть вблизи цели, скорость остается примерно такой же, а плотность воздуха у поверхности земли имеет наибольшее значение. Там тепло передается корпусу ракеты очень интенсивно. В результате я получил температуры, которые могли бы разрушить даже стальную оболочку.