Свет невидимого | страница 70
Радиоактивности — в этом все дело. Потому что при ядерных реакциях, в частности реакциях с участием нейтронов, образуются искусственные радиоактивные изотопы химических элементов.
Впрочем, сдается, я несколько идеализировал свойства нейтрона как ядерного снаряда. Чтобы осуществилась ядерная реакция, нейтрон все же должен двигаться с хорошей скоростью, иначе при столкновении с ядром он не внедрится в него, а отскочит, подобно теннисному мячику. Поэтому нередко нейтронам необходимо для целей ядерной бомбардировки сообщать энергию, и притом довольно значительную. Значит, и нейтроны следует разгонять в ускорит… Стоп, нейтроны ведь в ускорителях не разгонишь! Оно и понятно: нейтроны не заряжены и поэтому не реагируют на внешнее электрическое поле.
Вот почему физики должны были изыскивать какие-то способы ускорения нейтронов. Один из них был найден достаточно быстро. Я бы назвал этот способ биллиардным. Не претендую на то, чтобы это определение вошло в учебники, но суть дела оно все-таки передает.
Берут сплав какого-либо естественного радиоактивного элемента, испускающего альфа-частицы (например, радия или полония), с бериллием — элементом, ядра атомов которого богаты нейтронами. Альфа-частицы, ударяясь о ядра бериллия (а вылетают альфа-частицы из ядер атомов радия либо полония со скоростью около 15 тысяч километров в секунду — об этом уже упоминалось в одной из предыдущих глав), выбивают из них нейтроны, которые при этом также приобретают солидную скорость.
Но много нейтронов, или прибегая к терминологии физиков, солидный поток нейтронов таким способом не получить. Радий — один из редчайших элементов, полоний — и вовсе экзотика. Для лабораторных экспериментов подобные источники нейтронов еще годятся, но для промышленного получения искусственных радиоактивных изотопов конечно же нет.
Теперь понятно, почему химики сочли такими благодатными возможности, которые представили им ядерные реакторы. При делении урана в реакторах высвобождается громадное количество нейтронов. Даже в сравнительно небольших по размеру атомных реакторах через квадратный сантиметр его сечения проходят за секунду десятки, а то и сотни миллиардов нейтронов.
Достаточно поместить в реактор (либо в специальную камеру, куда отводятся нейтроны) какой-либо элемент, как в большинстве случаев, спустя определенное время, образуется искусственный радиоактивный изотоп этого элемента.
Сейчас трудно назвать область человеческой деятельности, куда в той или иной мере не проник химический анализ. Анализируют пищевые продукты, прежде чем отправить их потребителям; анализируют лекарства, прежде чем предложить их больному; анализируют воздух в шахте, прежде чем разрешить шахтерам спуск под землю; анализируют духи и серную кислоту, металлические сплавы и мороженое, воду для бассейнов и гранит для памятников. И почти всегда химикам нужно определять малые и даже сверхмалые примеси «чего-то» к «чему-то другому, основному». И главное, проводить это определение быстро. Очень быстро. И еще быстрей.