Растения - гениальные инженеры природы | страница 39



Фото 29. Набор прямоугольников с различным соотношением сторон, использованных английским специалистом в области бихевиористики при проведении эксперимента. Более трети опрошенных сочли за самую «красивую» фигуру с пропорцией 21:34, которая известна как золотое сечение.


Математикам и людям искусства соотношение 21:34, а точнее 0,618034... :1 (математически это число имеет вид:

, хорошо известно как золотое сечение). Художники, начиная с эпохи Возрождения, использовали в своих картинах золотое сечение, которое они считали идеальным выражением пропорциональности и которое они могли повсюду наблюдать в природе. Но, по-видимому, в изобразительном искусстве и прежде подсознательно руководствовались этим правилом. При этом нередко брались приближенные значения, например 3:5 (=0,600) или 5:8 (=0,625). В природе в большинстве случаев наблюдается намного более строгое соответствие. Так, в корзинках подсолнечника отклонение от золотого сечения составляет всего лишь четыре тысячных доли процента. [12]

Как проявляется золотое сечение в природе, можно видеть на фото 30 и 31. На первом из них изображен шаровидный кактус Mammillaria lanata, снятый сверху. На снимке хорошо различимо спиралевидное расположение скоплений колючек — так называемых ареол. Начало спиралей приходится на верхушечную часть кактуса. Новые ареолы зарождаются именно здесь. По мере роста и развития они строго по спирали оттесняются к краям. Если внимательно вглядеться в фотографии, то можно увидеть, что спирали идут в двух направлениях: по часовой стрелке (таких спиралей 34) и против часовой стрелки (их ровно 21). Опять 21:34. Это соотношение сторон того прямоугольника, который участники вышеописанного эксперимента назвала самым эстетичным, самым красивым по форме. Золотая пропорция (0,618034... :1) выдерживается здесь с точностью до 0,0065 процента (0,617647:1).

Фото 30. Ареолы (скопления колючек) кактуса Mammillaria lanata располагаются строго по спиралям.


Фото 31а. Тот же кактус, снятый сбоку. На этом небольшом участке его поверхности хорошо видны прямые линии, но которым располагаются ареолы. На предыдущей фотографии они имели вид спиралей.


Фото 31б. Растровая сетка в точности воспроизводит прямые линии, изображенные на фото 31а. «Сконструирована» в соответствии с золотым сечением.


Если смотреть на тот же кактус со стороны (фото 31а), то обнаруживается, что спирали на сравнительно небольшом участке поверхности кактуса выглядят как прямые линии, идущие по диагонали сверху вниз и слева направо или снизу вверх и справа налево. На фото 31б отображена построенная мною растровая сетка, в точности передающая диагональное расположение прямых оригинала. Хорошо видно, что прямые, идущие в одном направлении, имеют меньший наклон, чем прямые, идущие в противоположном направлении. При атом линии с различным наклоном располагаются на сетке так, что если вдоль горизонтальной прямой, проведенной от точки 0/0, начать считать диагонали, то в целом окажется что на 0,618... диагональ, наклоненную вправо, приходится одна диагональ с левым наклоном. Читатель вправе задать вопрос: а так ли это на самом деле? Ведь не может быть дробных прямых, которые могли бы быть сосчитаны. Но на рисунке отчетливо видно, что вначале примерно на две диагонали, имеющие наклон вправо, приходятся три, наклоненные влево (2:3=0,666), затем приблизительно на три с наклоном вправо — пять, имеющих наклон влево (5:8=0,625), и т. д. При этом точка пересечения диагоналей будет лежать тем ближе к горизонтальной прямой, чем точнее оказывается приближение к числу 0,618...