Расширенный фенотип: длинная рука гена | страница 143
Если бы от осы могло зависеть, каким из четырех исходов кончится дело, она «предпочитала» бы всегда оставаться в одиночестве, так как этот исход сопряжен с наиболее крупным выигрышем. Но как бы ей этого добиться? Ключевым допущением нашей модели было то, что данные четыре исхода не определяются теми решениями, которые оса способна принимать. Оса «решает», рыть или захватывать. Она не может принять решение «присоединить» еще одну осу или остаться одной, как человек не может принять решение не болеть раком. Такие исходы зависят от обстоятельств, не находящихся под контролем индивидуума. В данном случае — от действий других ос из этой популяции. Но как человек может статистически уменьшить свои шансы заболеть раком, приняв решение бросить курить, точно так же и перед осой стоит «задача» принять единственное доступное ей решение — рыть или захватывать — таким образом, чтобы с максимальной вероятностью прийти к желаемому результату. Выражаясь более строго, мы ищем стабильное значение р, такое р* что если в популяции частота всех решений в пользу рытья составляет р* то естественный отбор не будет благоприятствовать никакому мутантному гену, заставляющему придерживаться другого значения р.
Вероятность того, что решение осуществлять захват приведет к какому-либо конкретному исходу — например, желанному «одиночному» — зависит от общей частоты захватов в популяции. Если захваты в ней происходят часто, то количество свободных заброшенных норок понижается и становится больше шансов, что решившаяся на захват оса окажется в невыгодном положении «присоединившейся». Наша модель позволяет нам, взяв любое произвольное значение р — общей частоты случаев рытья в популяции, — предсказать вероятность, с которой в этом случае особь, принявшая решение рыть или захватывать, придет к тому или иному из четырех возможных исходов. Следовательно, для любого соотношения частот рытья и захвата в целом по популяции можно предсказать, каков будет средний выигрыш осы, выбравшей рытье. Для этого просто берутся значения ожидаемых выигрышей при каждом из четырех исходов, затем каждое из них умножается на вероятность достижения соответствующего исхода выбравшей рытье осой, и полученные произведения суммируются. Точно так же можно при любом произвольно выбранном соотношении частот рытья и захвата в популяции произвести аналогичный расчет для осы, выбравшей захват. И наконец, сделав несколько дополнительных правдоподобных допущений, приведенных в оригинальной статье, решаем уравнение и находим такое значение частоты рытья в популяции, при котором средний ожидаемый выигрыш осы, которая роет, в точности равен среднему ожидаемому выигрышу осы, которая захватывает. Это будет теоретически рассчитанная нами равновесная частота, и ее можно сравнить с частотой, наблюдаемой в дикой популяции. Ожидается, что реальная популяция будет либо находиться в точке равновесия, либо эволюционировать по направлению к этой точке. Наша модель позволяет также вычислить, какой процент ос в равновесной популяции будет приходить к каждому из четырех исходов, и эти цифры тоже можно сравнить с данными наблюдений. Модель предсказывает, что равновесие будет стабильным в том смысле, что отклонения от него будут исправляться естественным отбором.