Синергетика. Основы методологии | страница 17



Теория нелинейных динамических систем в настоящее время интенсивно развивается. Предложены различные формы классификации систем и их математических моделей. Введена терминология, которая активно внедряется в практику теоретических и экспериментальных исследований. Понятия фазового пространства, стационарной точки, цикла, тора, аттрактора, бифуркации, сепаратрисы уже давно вошли в обиход тех, кто использует результаты качественного анализа и расчётов параметров модельных динамических систем для исследования реальных явлений.

2. Выделение странных аттракторов. Количественный и качественный анализ поведения системы, находящейся в области странного аттрактора. Изучение эргодических свойств исследуемой системы

В настоящее время бурно развивается теория «странных» непериодических аттракторов, породившая новую терминологию: каскад бифуркаций, числа Фейгенбаума, фрактальная геометрия, множество Мандельброта, показатели Ляпунова.

Рассматриваются различные сценарии перехода от регулярного движения системы к детерминированному хаосу:

1. через каскад бифуркаций удвоения периода устойчивых циклов Фейгенбаума;

2. через разрушение неустойчивого трёхмерного тора с образованием странного аттрактора по сценарию Рюэля-Такенса;

3. через явление перемежаемости (сценарий Помо-Маннервиля).

Разработаны математические методы и алгоритмы, позволяющие говорить о становлении нового направления науки, которое в настоящее время называется «теорией детерминированного хаоса», и применять их при исследовании тех объектов, которые могут быть описаны с помощью математических моделей динамических систем.

Н. А. Магницким и С. В. Сидоровым предложена новая теория динамического хаоса в нелинейных диссипативных системах, утверждающая существование единственного универсального сценария перехода к хаосу и рождения сингулярных аттракторов в нелинейных диссипативных системах дифференциальных уравнений.

Особо следует выделить анализ эргодических свойств динамической системы, указывающих на возможность неоднозначного предсказания её будущего поведения даже для случая динамических систем, описываемых детерминированными уравнениями.

Глава 4. Анализ поля системы

1. Классификация волн, вихрей, грибовидных (мультипольных) структур и транспортно-информационных систем

Всякая самоорганизующаяся система является открытой системой, обменивающейся с окружающей средой (полем) материей, энергией и информацией. Этот обмен может происходить непрерывно и дискретно. Взаимодействие с внешней средой может способствовать как сохранению структуры, так и её разрушению. Поэтому адекватное и полное описание самоорганизующихся систем возможно лишь совместно с окружающей средой — полем, в котором существует система.