Веревка вокруг Земли и другие сюрпризы науки | страница 51
Чтобы доказать, что вещественные числа нельзя взаимно-однозначно соотнести с целыми числами, Кантор продемонстрировал: как бы вы ни пытались выстроить вещественные числа в организованную последовательность, как мы проделывали с дробями, всегда есть шанс, что всплывет какое-нибудь вещественное число, которого в этой последовательности нет.
И вот как он это обосновал. Допустим, у нас есть совокупность всех вещественных чисел (которых бесконечное количество), и мы ввели некое правило, позволяющее выстроить их по порядку. Полученная нами в результате последовательность может выглядеть, например, так:
Целое число | Вещественное число |
1 | 7,2728654901088… |
2 | 2,0709903829756… |
3 | 18,696243576675… |
4 | 0,8717454638892… |
5 | 3,8342020203020… |
6 | 0,6766682920082… |
7 | 3,1416269873562… |
Какова бы ни была закономерность расположения чисел, она не очевидна, но речь сейчас не об этом. До тех пор, пока мы пребываем в уверенности, что можем соотнести любое вещественное число с привычным и милым нашему сердцу миром целых чисел, мы неизменно будем получать такую вот странноватую последовательность.
Итак, вы можете сунуть мне под нос этот список и похвастаться использованным правилом расположения чисел, благодаря которому любое взятое с потолка вещественное число вплоть до бесконечности обязательно где-нибудь в этом списке да найдется, а значит, бесконечность вещественных чисел равна бесконечности соответствующих им порядковых номеров, то есть целых чисел. Но как бы ни выглядел ваш список, я могу придумать вещественное число, которого там не будет.
Для простоты сосредоточимся только на знаках после запятой.
Я могу составить число, чей первый знак после запятой будет отличаться от первого знака в первом числе списка. Второй знак в моем числе не совпадает со вторым знаком второго числа. Третий знак моего числа будет отличаться от третьего знака после запятой в третьем числе списка, и так далее.
Взяв в качестве образца приведенный выше список, я могу составить число 0,3942501… Многоточие означает, что количество знаков после запятой бесконечно, как и у большинства вещественных чисел. А теперь я могу доказать, что, каким бы правилом при расположении чисел вы ни руководствовались, моего числа в вашем списке нет. Его не может там быть из-за самого метода, каким я его создавал, ведь от каждого вещественного числа в вашем списке оно отличается хотя бы на одну цифру. Это и есть тот «черный лебедь», доказывающий, что изначальное допущение, будто вы установили взаимно-однозначное соответствие между всеми вещественными и всеми целыми числами, неверно. Эти две бесконечности — бесконечность вещественных чисел и бесконечность целых чисел — существенно разнятся, на этой разнице Кантор основал целое новое направление теории чисел. Теперь, быть может, вас не удивит, что математики полагают, будто «размеров» бесконечностей не два, а гораздо больше. В действительности их бесконечно много, и, в довершение картины, данная бесконечность больше любой из бесконечностей, входящих в это количество.