Веревка вокруг Земли и другие сюрпризы науки | страница 49



Люди с избытком свободного времени придумали целую игру с использованием поисковой системы «Гугл» — «гугл-вэкинг»[24]. Цель игры — найти комбинацию из двух слов, которая встречается в громадном архиве «Гугла» всего на одной странице. Найдя такую комбинацию, гугл-вэкеры сообщают о своем открытии на специальном гугл-вэкерском сайте. «Но в таком случае эта комбинация слов сразу перестанет быть уникальной, — возразите вы. — Ведь теперь она встречается уже на двух сайтах — изначальном и гугл-вэкерском». Однако «Гугл» милостиво исключил сайт гугл-вэкеров из своего поискового процесса, так что парадокса удалось избежать.

Моя бесконечность больше твоей!

Многим из нас не так-то просто свыкнуться с понятием бесконечности и особенно с мыслью о том, что бесконечности бывают разных размеров. Но факт остается фактом: математики имеют дело с бесконечностями нескольких размеров, каждая из которых «бесконечно» больше, чем предыдущая. Многим «бесконечность» представляется в виде числа, к которому стремишься, когда считаешь от единицы и дальше, — и так вечно. В таком ракурсе идея о существовании чисел, превышающих эту бесконечность, кажется абсурдной (разве что считать придется больше, чем вечно). Пытаясь продемонстрировать, что такие числа все-таки есть, математики использовали так называемую биекцию, то есть взаимно-однозначное соответствие.

Предположим, вы выстроили все числа в ряд (1,2,3…) и так до «бесконечности» (в дальнейшем я не буду пользоваться кавычками, но имейте в виду: даже если из моих слов покажется, что бесконечность являет собой некое конкретное число, на самом деле это не так). Если бы у вас был другой ряд чисел, скажем дробей, и вы бы могли соотнести эти два ряда так, чтобы каждому числу соответствовала парная ему дробь, а у каждой дроби была пара в виде целого числа, и так до бесконечности, то можно было бы сказать, что оба ряда содержат одинаковое количество чисел, следовательно, их бесконечности равны.

И напротив, если бы у вас был ряд чисел, которые нельзя попарно соотнести с целыми числами так, чтобы не осталось неохваченных, лишенных пары чисел, вы могли бы сказать, что бесконечность данного ряда чисел больше бесконечности целых чисел.

Рассмотрим для начала дроби. На первый взгляд не похоже, чтобы дробей существовало столько же, сколько целых чисел, а не больше. Ведь между каждыми двумя соседними целыми числами — скажем, 1 и 2 — окажется куча дробей: 3/2, 4/3, 6/5 и т. п. Но если можно расставить все дроби в единственно возможном порядке, создав из них бесконечно долгую последовательность, то что мешает, к примеру, поставить целое число 817 в пару к дроби с 817-м порядковым номером в списке дробей? Итак, у каждой дроби окажется единственно возможное парное ей целое число, и наоборот. (Причем целые числа окажутся и в списке дробей, ведь 4 можно выразить как 4/1.)