Этюды о Вселенной | страница 83



6. Элементарные частицы

Рассмотрим теперь более подробно основные свойства так называемых «элементарных» частиц. Изучение этих свойств представляет, кроме всего, и заметный методический интерес, поскольку приводит к обсуждению самого процесса исследования исходных составляющих вещества.

Семейства частиц

Сколько элементарных частиц обнаружено до сих пор? Если судить по толщине кратких справочников, где описаны их свойства и которые имеют хождение среди физиков, то несколько сотен. Многие из этих частиц собраны в семейства, похожие на семейства нуклонов или пионов. Эти семейства играют роль, сравнимую с ролью периодической системы Менделеева, столь полезной в химии. Но именно такое сходство и наталкивает на мысль, что мы занимаемся классификацией объектов, похожих на атомы, а вовсе не элементарных. Так или иначе, но уже снова начались поиски действительно элементарных составляющих вещества. к 1963 г. выяснилось, что частицы следует объединять в более обширные семейства. Так, например, нуклоны вместе с Λ-частицей и с частицами Σ>0 и Ξ>0 должны были образовать сверхсемейство из восьми членов (октет); таким же образом пионы вошли в другой октет и т.д.

Древнегреческие философы приписывали атомам исключительно правильные и симметричные формы. Хотя реальные атомы весьма далеки от этого, мысль о том, что в физике понятие симметрии должно играть важную роль, осталась. Классификация частиц по семействам как раз и отражает существование какой-то симметрии в природе; рассмотрим ее.

SU-3-симметрия

Гейзенберг считал протон и нейтрон двумя состояниями одной и той же частицы – нуклона. Нуклон может перемещаться в пространстве, вращаться вокруг собственной оси, подобно волчку («спин»), а также принимать два различных образа – быть либо нейтроном, либо протоном. Подобные рассуждения применимы и к трем пионам. Согласно такой точке зрения, переход между протоном и нейтроном происходит в другом, особом, пространстве, для построения которого необходимо ввести дополнительную степень свободы и не ньютоновские измерения.

Прерывистый характер таких переходов обусловлен принципами квантовой механики и тесно связан с идеей квантования орбит, о которой мы уже говорили. Новое пространство, в котором перемещаются нуклоны и пионы, кроме того, что в нем возникают другие семейства частиц, примечательно еще и высокой степенью симметрии (самую простую аналогию мы получим, вообразив круг или сферу). из этой симметрии следует прежде всего, что частицы, входящие в одно семейство, имеют почти одинаковые свойства, если не считать электрического заряда. Наличие сверх семейств (как говорят физики, мультиплетов SU-3) означает, что у частиц имеются дополнительные степени свободы, или возможности изменения состояния. Существует математическое понятие группы, на котором мы не будем здесь останавливаться. с помощью этого понятия и производится систематизация всех возможных и воображаемых симметрий. Теория групп вошла в теоретическую физику еще в 30-е годы, и ее триумфальное шествие продолжается по сей день. на ее основе можно предсказать детали строения и внутренние иерархии всех семейств группы SU-3; в действительности эти предсказания можно распространить на любую симметрию, включая те, которые еще предстоит открыть.