Математика для любознательных | страница 73




Глава II


Потомок древнего абака

Чеховская головоломка


Задача № 6

Припомним ту, в своем роде знаменитую арифметическую задачу, которая так смутила семиклассника Зиберова из Чеховского рассказа «Репетитор»:

«Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он того и другого, если синее стоило 5 руб. за аршин, а черное 3 руб.?»

С тонким юмором описывает Чехов, как беспомощно трудились над этой задачей и семиклассник-репетитор, и его ученик, двенадцатилетний Петя, пока не выручил их Петин отец, Удодов:

«Петя повторяет задачу и тотчас же, ни слова не говоря, начинает делить 540 на 138.

- Для чего же вы делите? Постойте! Впрочем, так… продолжайте. Остаток получается? Здесь не может быть остатка. Дайте-ка, я разделю!

Зиберов [репетитор] делит, получает 3 с остатком и быстро стирает.

- Странно… - думает он, ероша волосы и краснея. - Как же она решается? Гм!… Это задача на неопределенные уравнения, а вовсе не арифметическая.

Учитель глядит в ответы и видит 75 и 63.

- Гм!… странно… Сложить 5 и 3, а потом делить 540 на 8? Так, что ли? Нет, не то!

- Решайте же! - говорит он Пете.

- Ну, чего думаешь? Задача -то ведь пустяковая, - говорит Удодов Пете. - Экий ты дурак, братец! Решите уже вы ему, Егор Алексеич.

Егор Алексеич [репетитор] берет в руки грифель и начинает решать. Он заикается, краснеет, бледнеет.

- Эта задача, собственно говоря, алгебраическая, - говорит он. - Ее с иксом и игреком решить можно. Впрочем, можно и так решить. Я вот разделил… Понимаете? Или вот что. Решите мне эту задачу к завтрему… Подумайте…

Петя ехидно улыбается, Удодов тоже улыбается. Оба они понимают замешательство учителя. Ученик VII класса еще пуще конфузится, встает и начинает ходить из угла в угол.

- И без алгебры решить можно, - говорит Удодов, протягивая руку к счетам и вздыхая. - Вот, извольте видеть…

Он щелкает на счетах, и у него получается 75 и 63, что и нужно было.

- Вот-с… по-нашему, по-неученому».


* * *

Эта сценка с задачей, заставляющая нас смеяться над конфузом злосчастного репетитора, задает нам сама три новых задачи. А именно:

1. Как намеревался репетитор решить задачу алгебраически?

2. Как должен был решить ее Петя?

3. Как решил ее отец Пети на счетах «по-неученому»?


Решение

На первые два вопроса, вероятно, без труда ответят если не все, то во всяком случае, - многие читатели нашей книжки. Третий вопрос не так прост. Но рассмотрим наши задачи по порядку.

1. Семиклассник-репетитор готов был решать задачу «с иксом и игреком», будучи уверен, что задача - «собственно говоря, алгебраическая». И он, надо думать, легко справился бы с ней, прибегнув к помощи системы уравнений (только не неопределенных, как ему казалось).