Живая математика. Математические рассказы и головоломки | страница 74
Рис. 122
Другой прием решения таких задач был указан при рассмотрении головоломки 8-й.
79. Ответ, что игрушечный кирпичик весит 1 кг, т. е. всего в четверть меньше, грубо ошибочен. Кирпичик ведь не только вчетверо короче настоящего, но и вчетверо уже да еще вчетверо ниже; поэтому объем и вес его меньше в 4 х 4 х 4 = 64 раза.
Правильный ответ, следовательно, таков: игрушечный кирпичик весит 4000: 64 = 62,5 г.
80. Вы теперь уже подготовлены к правильному решению этой задачи. Так как фигуры человеческого тела приблизительно подобны, то при вдвое большем росте человек имеет объем не вдвое, а в 8 раз больший. Значит, наш великан весит больше карлика раз в 8.
Один из высочайших великанов, о которых сохранились сведения, был житель Эльзаса ростом в 275 см - на целый метр выше человека среднего роста. Самый маленький карлик имел в высоту меньше 40 см, т. е. был ниже исполина-эльзасца круглым счетом в 7 раз. Поэтому если бы на одну чашу весов поставить великана-эльзасца, то на другую надо бы для равновесия поместить 7 x 7 x 7 = 343 карлика, - целую толпу.
81. Объем большего арбуза превышает объем меньшего в
почти вдвое. Выгоднее, значит, купить крупный арбуз; он дороже только в полтора раза, а съедобного вещества в нем больше раза в два.
Почему же, однако, продавцы просят за такие арбузы обычно не вдвое, а только в полтора раза больше? Объясняется это просто тем, что продавцы в большинстве случаев не сильны в геометрии. Впрочем, не сильны в ней и покупатели, зачастую отказывающиеся из-за этого от выгодных покупок. Можно смело утверждать, что крупные арбузы выгоднее покупать, чем мелкие, потому что они расцениваются всегда ниже их истинной стоимости; но большинство покупателей этого не подозревают. По той же причине всегда выгоднее покупать крупные яйца, нежели мелкие, если только их не расценивают по весу.
82. Окружности относятся между собой как диаметры. Если окружность одной дыни 60 см, другой 50 см, то отношение их диаметров 60 х 50 = >6/>5, а отношение их объемов
Большая дыня должна быть, если оценивать ее сообразно объему (или весу), в 1,73 раза дороже меньшей; другими словами, дороже на 73 %. Просят же за нее всего на 50 % больше. Ясно, что есть прямой расчет ее купить.
83. Из условия задачи следует, что диаметр вишни в 3 раза больше диаметра косточки. Значит, объем вишни больше объема косточки в 3 х 3 х 3, т. е. в 27 раз; на долю косточки приходится У часть объема вишни, а на долю сочной части - остальные