Живая математика. Математические рассказы и головоломки | страница 24




Рис. 21


19. Приводим два решения этой задачи из числа многих возможных. В первом решении (рис. 22) имеем:


Во втором решении (рис. 23):



Рис. 22


Рис. 23


20. На рис. 24 дан образчик магического квадрата с суммою очков в ряду 18.


21. Вот в виде примера две прогрессии с разностью 2:

a) 0-0; 0-2; 0-4; 0-6; 4-4 (или 3-5); 5-5 (или 4-6).

b) 0-1; 0-3 (или 1-2); 0-5 (или 2-3); 1-6 (или 3-4); 3-6 (или 4-5); 5-6.

Рис. 24


Всего 6-косточковых прогрессий можно составить 23. Начальные косточки их следующие:

a) для прогрессий с разностью 1:


b) для прогрессий с разностью 2:

0-0 0-2 0-1


22. Расположение задачи может быть получено из начального положения следующими 44 ходами:

14, 11, 12, 8, 7, 6, 10, 12, 8, 7,

4, 3, 6, 4, 7, 14, И, 15, 13, 9,

12, 8, 4, 10, 8, 4, 14, 11, 15, 13,

9, 12, 4, 8, 5, 4, 8, 9, 13, 14,

10, 6, 2, 1.


23. Расположение задачи достигается следующими 39 ходами:

15, 14, 10, 6, 7, 11, 15, 10, 13, 9,

5, 1, 2, 3, 4, 8, 12, 15, 10, 13,

9, 5, 1, 2, 3, 4, 8, 12, 15, 14,

13, 9, 5, 1, 2, 3, 4, 8, 12.


24. Магический квадрат с суммою 30 получается после ряда ходов:

12, 8, 4, 3, 2, 6, 10, 9, 13, 15,

14, 12, 8, 4, 7, 10, 9, 14, 12, 8,

4, 7, 10, 9, 6, 2, 3, 10, 9, 6,

5, 1, 2, 3, 6, 5, 3, 2, 1, 13,

14, 3, 2, 1, 13, 14, 3, 12, 15, 3.


КРОКЕТ

Занимаясь головоломками, относящимися к домино и к игре «15», мы оставались в пределах арифметики. Переходя к головоломкам на крокетной площадке, мы вступаем отчасти в область геометрии.

25. Даже опытный игрок скажет, вероятно, что при указанных условиях пройти ворота легче, чем крокировать: ведь ворота вдвое шире шара. Однако такое представление ошибочно: ворота, конечно, шире, нежели шар, но свободный проход для шара через ворота вдвое уже, чем мишень для крокировки.

Взгляните на рис. 2, 5, и сказанное станет вам ясно. Центр шара не должен приближаться к проволоке ворот меньше чем на величину радиуса, иначе шар заденет проволоку. Значит, для центра шара останется мишень на два радиуса меньше ширины ворот. Легко видеть, что в условиях нашей задачи ширина мишени при прохождении ворот с наилучшей позиции равна диаметру шара.


Рис. 25


Рис. 26


Посмотрим теперь, как велика ширина мишени для центра движущегося шара при крокировке. Очевидно, что, если центр крокирующего приблизится к центру крокируемого меньше чем на радиус шара, удар обеспечен. Значит, ширина мишени в этом случае, как видно из рис. 26, равна двум диаметрам шара.

Итак, вопреки мнению игроков, при данных условиях вдвое легче попасть в шар, нежели свободно пройти ворота с самой лучшей позиции.