Природа и общество | страница 15
Рассмотрим теперь следующий, столь же простой случай, когда фазовая кривая М(К) вогнута, и также пересекает биссектрису в единственной точке 1 (рис.9). Как видно из рисунка, любое состояние популяции P>0, лежащее между точками 0 и 1, перейдет последовательно в состояния P>1, P>2,..., приближающиеся к точке 0; абсциссы этих точек,
Рис.9
то есть численности популяции в последовательные годы, убывают, приближаясь к нулю: популяция вымирает. Если же начальное состояние популяции P>0' расположено справа от точки 1, то в следующих состояниях P>1', P>2',..., как видно из чертежа, численность популяции неограниченно возрастает. Ясно, что такого явления в природе не может быть; следовательно, при достаточно больших значениях численности К кривая на рис.9 уже не является реалистическим изображением процесса размножения; она уже не может быть вогнутой. Какой она может быть при бо'льших численностях, мы скоро увидим.
Точка 1 опять является точкой равновесия, но теперь это неустойчивое равновесие: при малейшем отклонении от этого состояния популяция удаляется от него, либо в сторону вымирания (если отклонение было влево), либо в сторону возрастания (если вправо). Ясно, что такое состояние, как 1, не может сохраниться и никогда не наблюдается в природе. Но точки этого типа важны в качестве "водоразделов", отделяющих области разного поведения популяции.
Если кривая рис.8 часто встречается – а вместе с нею часто встречаются, при неизменных внешних условиях, устойчивые популяции – то кривая рис.9 в целом нереальна; запомним только, что участок вогнутости, лежащий ниже биссектрисы, означает убывание численности популяции до левого конца участка.
Более сложные популяционные процессы
До сих пор мы рассматривали только возрастающие функции М(К), то есть такие, что при увеличении К увеличивается также М; это значит, что большей популяции в данном году соответствует бо'льшая в следующем. При таком условии мы могли предвидеть только один вид поведения популяции: ее изменение в одну сторону (возрастание или убывание) вплоть до состояния равновесия (которым может быть и точка 0, соответствующая вымиранию рассматриваемого вида). Но для некоторых видов фазовая функция не везде возрастает, что позволяет предсказать и другие способы поведения популяции, тоже наблюдаемые в природе. Предположение, что при больших К популяция начинает убывать, означает, конечно, перенаселение и может быть проверено наблюдением.