Одиссея богов | страница 66



Современные ученые твердо придерживаются принципа простых решений. Но этот принцип ослепляет их. Они рабы своего образа мыслей, поскольку «простой» ответ считают единственно правильным решением. Так зачем же исследовать глубже? Этот метод познания, даже отмеченный священным штампом «научно», дает только половинчатые ответы на все хоть сколько-нибудь глубокие вопросы. Один из таких ответов, который сладко убаюкивает ученые умы, выводится из знаний, которыми обладали древнегреческие математики, — к примеру, Евклид, живший в IV–III веках до нашей эры, чьи трактаты были известны в Египте и Греции. Он написал несколько трудов, посвященных не только целому спектру математических дисциплин, но и геометрии, включая учение о пропорциях, стереометрию, а также такие путаные понятия, как квадратичная иррациональность. Евклид был современником философа Платона, который, в свою очередь, время от времени занимался политикой. Говорят, Платон сидел у ног Евклида и слушал, как тот читает свои труды. Поэтому, пожалуй, можно впасть в искушение и поверить, что Платон так восхитился математическим гением Евклида, что решил использовать эти знания на практике, разрабатывая проекты, к организации которых он как политик, вероятно, был причастен. Так что же знал Платон?

В диалоге «Республика» Платон говорит своим собеседникам о том, что понятие «площадь» относится к сфере геометрии. В другом диалоге («Менон, или О добродетели») он даже вступает в дискуссию с рабом и, пользуясь неведением этого парня, демонстрирует возможности высшей геометрии. А в диалоге «Тимей» все развивается еще стремительнее: здесь говорится и о проблеме пропорций, и о произведении, упоминаются даже квадраты чисел, а также то, что мы называем золотым соотношением. Приведенная ниже цитата пусть и малопонятна для людей, которые, как и я, не изучали высшую математику, но зато показывает высокий уровень математических дискуссий, происходивших более двух с половиной тысячелетий назад:

…когда из трех чисел — как кубических, так и квадратных — при любом среднем числе первое так относится к среднему, как среднее к последнему, и, соответственно, последнее к среднему как среднее к первому, тогда при перемещении средних чисел на первое и последнее место, а последнего и первого, напротив, на средние места выяснится, что отношение необходимо остается прежним, а коль скоро это так, значит, все эти числа образуют между собой единство. При этом, если бы телу Вселенной надлежало стать простой плоскостью без глубины, было бы достаточно одного среднего члена для сопряжения его самого с крайними.