Загадки, фокусы и развлечения | страница 38
– Ну-ка, реши, – обратился ко мне брат.
– Если арбуз дороже в 1 1/2 раза, а шире только в 1 1/4 раза, то ясное дело, что дешевле тот арбуз, который поменьше.
– Ну нет! Ведь мы сейчас толковали о том, что если предмет шире, толще и выше в 1 1/4 раза, то объем его больше 1 1/4 x 1 1/4 x 1 1/4, т. е. вдвое. Значит, выгоднее купить крупный арбуз; он дороже только в полтора раза, а съедобного вещества в нем больше в два раза.
– Почему же за него просили не вдвое дороже, а только в полтора? – спросил гость.
– Потому что торговцы не знают геометрии. Но не знают ее и покупатели и зачастую отказываются поэтому от выгодных покупок. Можно смело утверждать, что крупные арбузы всегда выгоднее покупать, чем мелкие, потому что они расцениваются торговцами ниже их истинной стоимости; но большинство покупателей не подозревает об этом.
– Значит, и крупные яйца выгоднее покупать, нежели мелкие?
– Безусловно, они обойдутся дешевле. Впрочем, немецкие торговцы догадливее наших: продают яйца на вес; тогда ошибки в расценке не будет.
– Мне задали еще одну занятную задачу, которую я не сразу решил, – сказал гость. – Одного человека спросили, сколько весит пойманная им рыба. Он ответил: «три четверти килограмма и еще три четверти своего веса». Сколько же весила рыба?
– Ну, задача не хитрая, – ответил брат. – Ясно, что 3/4 килограмма есть вес остающейся 1/4 рыбы. Вся рыба весит в 4 раза больше, чем 3/4 килограмма, т. е. 3 килограмма. Я предложу вам задачу потруднее: есть ли на свете люди с совершенно одинаковым числом волос на голове?
– Знаю, – проворно вмешался я. – Есть. Все лысые люди имеют одинаковое число волос!
– А не лысые?
– Те, конечно, нет.
– Я о них и спрашивал. Впрочем, могу поставить вопрос даже и так: «есть ли в Москве люди с одинаковым числом волос?» – сказал брат.
– Мне думается, – вступилась за меня сестра, – что было бы совершенно невероятным совпадением, если бы такие люди нашлись. Хотя это теоретически и возможно, я смело поставила бы тысячу рублей против копейки, что не найдется ни одной пары людей с одинаковым числом волос не только в Москве, но и в целом мире.
– А я на твоем месте не ставил бы и копейки против тысячи рублей, потому что утверждать это – значит готовить себе верный проигрыш, – ответил брат. – Не скажу, чтобы было легко отыскать пару равноволосых людей, но что таких пар должно иметься сотни тысяч в одной Москве, в этом я твердо убежден.
– Как! В одной только Москве сотни тысяч пар равноволосых людей? Ты шутишь!