Системы мира (от древних до Ньютона) | страница 39
Мы видим, таким образом, что при помощи теории эпициклов и деферентов удается объяснить второе неравенство в движении планет, т. е. прямые и попятные движения планет и их стояние. Но интересно, что одновременно представить правильно и направления с Земли планеты и расстояния планет от Земли одними и теми же эпициклами нельзя.
Чтобы положения планет, вычисленные на основании теории эпициклов, согласовались с наблюдаемыми положениями, необходимо было знать радиусы эпициклов и деферентов и скорости движения. С этой целью Пто- лемей принял, что в периодах времени обращения по этим кругам есть различие для трех «верхних», т. е. далеких планет (Марса, Юпитера и Сатурна) и для двух «нижних», т. е. близких (Меркурия и Венеры). Все верхние планеты совершают полный оборот по окружности эпицикла в одинаковый промежуток времени, равный году, т. е. периоду, в течение которого Солнце возвращается к одним и тем же звездам. Наоборот, у нижних планет период обращения по эпициклу различен и равен промежутку времени, в течение которого планета возвращается к прежним зоездам (Меркурий—88 дней, Венера — 225). Точно так же Птолемей определял различно промежуток времени, в течение которого центр эпицикла совершает полный оборот по окружности деферента. Он допускал, что для Марса, Юпитера и Сатурна этот промежуток различен и равен тем периодом времени, в течение которого каждая из этих планет, описав полную окружность на небосводе, возвращается к прежним звездам (Марс — почти 2 года, Юпитер—12 лет, Сатурн — почти 30 лет). Что же касается других двух планет, Меркурия и Венеры, которые видны лишь недалеко от Солнца, то для них, наоборот, этот промежуток Птолемей считал одинаковым и равным году.
Фиг. 15. Видимое движение планеты по Птолемею. А — центр эпицикла, по которому равномерно движется планета в том же направлении, что и деферент, движущийся вокруг земли Т. Когда планета находится в точке Р, ее движение с Земли будет казаться прямым, ибо движения по эпициклу и деференту направлены в одну сторону. При положении Pj движение планеты из точки Т будет казаться обратным, ибо движение по эпициклу направлено в обратную сторону. При переходе от одного движения к другому, в точках Р>? и Р, планета будет казаться остановившейся.
По системе Птолемея Земля занимает несколько эксцентрическое положение внутри деферента, а все плоскости деферентов проходят через центр земного шара и наклонены друг к другу под различными углами, равно как н плоскости эпициклов к соответствующим деферентам. Дело в том, что наблюдения какой‑нибудь планеты, например Юпитера, показывают, что эта планета не движется в плоскости эклиптики (т. е. того круга, по которому, нам кажется, движется Солнце), а бывает то к северу, то к югу от этого круга. Чтобы учесть это обстоятельство, Птолемей принял, что плоскости тех кругов, которые служат для объяснения видимого движения Юпитера и других планет, не совпадают с плоскостью круговой орбиты Солнца, а несколько наклонены к ней. Следовательно, чтобы на основании теории эпициклов воспроизвести движение какой- нибудь планеты со всеми ее петлями, надо не только подобрать соответствующим образом скорости движения планеты и центра эпицикла (т. е. радиусы деферента и эпицикла и времена обращения центра эпицикла по деференту и планеты по эпициклу), но и углы наклона плоскостей деферента и эпицикла к эклиптике.