Кратчайшая история времени | страница 24
Допустим, что верхний наблюдатель, дождавшись отсчета своих часов, немедленно посылает нижнему световой сигнал. При следующем отсчете он шлет второй сигнал. По нашим условиям понадобится одна секунда, чтобы каждый сигнал достиг нижнего наблюдателя. Поскольку верхний наблюдатель посылает два световых сигнала с интервалом в одну секунду, то и нижний наблюдатель зарегистрирует их с таким же интервалом.
Что изменится, если в этом эксперименте, вместо того чтобы свободно плыть в космосе, ракета будет стоять на Земле, испытывая действие гравитации? Согласно теории Ньютона гравитация никак не повлияет на положение дел: если наблюдатель наверху передаст сигналы с промежутком в секунду, то наблюдатель внизу получит их через тот же интервал. Но принцип эквивалентности предсказывает иное развитие событий. Какое именно, мы сможем понять, если в соответствии с принципом эквивалентности мысленно заменим действие гравитации постоянным ускорением. Это один из примеров того, как Эйнштейн использовал принцип эквивалентности при создании своей новой теории гравитации.
Итак, предположим, что наша ракета ускоряется. (Будем считать, что она ускоряется медленно, так что ее скорость не приближается к скорости света.) Поскольку корпус ракеты движется вверх, первому сигналу понадобится пройти меньшее расстояние, чем прежде (до начала ускорения), и он прибудет к нижнему наблюдателю раньше чем через секунду. Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше, так что интервал между двумя сигналами остался бы равным одной секунде. Но в момент отправки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.
В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле. Следовательно, даже если ракета не ускоряется, а, например, стоит на стартовом столе на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам). Вот это действительно удивительно!