10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА | страница 63
Расширение Вселенной продолжалось всего 10~33 секунды, а уже к концу первой секунды после Большого взрыва почти все вещество перешло в форму адронов (тяжелых субатомных частиц), образуемых кварками. Температура при этом понизилась от бесконечности примерно до 3 триллионов градусов по шкале Кельвина и это позволило кваркам начать объединение друг с другом и формировать нейтроны и протоны, что было невозможно при более высоких энергиях. Некоторые комбинации кварков оказались слишком сложными, не смогли «выжить» и исчезли в результате распада. По мере остывания Вселенной в ней начали происходить и другие, более медленные процессы развития, например образование лептонов, вследствие чего этот этап развития называют лептонной эпохой.
На этом этапе температура снизилась примерно до 10 миллиардов градусов по шкале Кельвина, что позволило возникнуть следующему поколению элементарных частиц, так называемым лептонам, к которым относятся легкие атомные частицы (электрон, нейтрино, мюоны и их античастицы), вследствие чего примерно через 60 секунд после Большого взрыва началась эпоха синтеза ядер, продолжавшаяся около 2 минут. После этого температура понизилась примерно до 1 миллиарда градусов, а средние энергия и плотность стали подобны тем, которые мы можем наблюдать сейчас внутри молодых звезд, где идет непрерывный синтез атомов гелия при одной из важнейших термоядерных реакций. Известно, что этот процесс имеет три стадии: 1) нейтрон захватывает протон, образуя ядро дейтерия; 2) дейтерий превращается в тритий после захвата следующего протона; 3) тритий соединяется с дополнительным протоном, образуя устойчивое ядро гелия из двух нейтронов и двух протонов. Неудивительно, что за эту эпоху было создано огромное количество ядер атомов гелия и лишь очень небольшое число стабильных ядер дейтерия и лития. Это обстоятельство имеет особое значение, поскольку относительное содержание трех указанных типов атомов характерно для этапа образования элементов и останется неизменным в течение всего дальнейшего расширения Вселенной (от 12 до 20 миллиардов лет).
В настоящее время гелий составляет примерно четверть от общей массы Вселенной, и именно синтез гелия внутри звезд предлагался упоминавшимися выше теоретиками из Принстона во главе с Дике в качестве основного механизма, ответственного за распространенность элементов в существующем мире.
Итак, прошло примерно три минуты после Большого взрыва. Закончилось бурное образование гелия и доминирующую роль в развитии мира стало играть излучение (в первую очередь, высокоэнергетические рентгеновские лучи), вследствие чего всю последующую длительную эпоху (около 300 000 лет) называют радиационной. Первые 10 000 лет в центре Вселенной горел чудовищный огненный шар, но постепенно количество энергии, превращающейся в вещество, стало сравниваться с количеством, преобразующимся в энергию, что стало исключительно важной вехой в развитии Вселенной, поскольку именно с этого момента началось образование привычных нам атомов. Дело в том, что только после установления такого равновесия фотоны (крошечные квантовые частицы) получили возможность свободно распространяться, так как до этого их движение ограничивалось непрерывными процессами столкновения и рассеяния на электронах. Попросту говоря, до этого никакой наблюдатель, даже если мы вообразим себе фантастическую возможность его существования, не мог бы наблюдать извне (хотя никакого «извне» тоже еще не существовало!) описываемые события, так что первые 300 000 лет истории мира буквально «скрыты во мгле», и, следовательно, ни одна из многочисленных в истории искусства попыток нарисовать или как-то описать зарождение мира не имеет никакого смысла или значения.