А ну-ка, догадайся! | страница 36
Своим последним маневром управляющий гостиницей освободил бесконечное множество комнат.
Это означает, что, вычитая из бесконечности бесконечность, можно получить снова бесконечность.
Действительно, множество всех натуральных чисел можно поставить во взаимно-однозначное соответствие с множеством всех четных чисел. Если из всех натуральных чисел вычеркнуть четные, то останется бесконечное множество нечетных чисел.
>Гостиница «Бесконечность» — лишь один из многих парадоксов, связанных с бесконечностью. Существует много различных, бесконечностей! Множество натуральных чисел — самая «бедная» из бесконечностей, занимающая низшую ступень бесконечной иерархии. Вторая ступень соответствует бесконечности множества точек во Вселенной, а третья ступень — ещё большей бесконечности!
>Немецкий математик Георг Кантор, открывший лестницу бесконечностей, ввел для каждой ступени специальные обозначения: алеф-нуль, алеф-один, алеф-два и т. д.
Кардинальное число множества — это число элементов в нем. Например, кардинальное число множества букв слова «КОТ» равно 3. Любое конечное множество имеет конечное кардинальное число. Георг Кантор открыл, что одни бесконечные множества могут быть «больше» других. Кардинальные числа бесконечных множеств он обозначил первой буквой древнееврейского алфавита, которая называется «алеф» (
Индекс у алефа указывает порядковый номер ступени в иерархии бесконечностей.
Кардинальное число множества всех натуральных чисел (так называемого счетного множества) Кантор обозначил
Парадокс с гостиницей «Бесконечность» показывает, что в некотором смысле справедливо и равенство
Как необычна арифметика кардинальных чисел!
Бесконечное множество всех действительных чисел больше, чем множество целых чисел. Кантор считал, что оно имеет кардинальное число
С помощью своего знаменитого «диагонального процесса» Кантор доказал, что множество всех действительных чисел невозможно поставить во взаимнооднозначное соответствие с множеством целых чисел.