Энциклопедия лучших игр со словами и цифрами | страница 62
Существует только 2 квадрата больше 50: 64 и 81 – значит в одном из этих домов живет Даша.
Поэтому она и подумала, что Саша живет в другом. Значит, на самом деле Ns > 50 и Ns = 64 и ? 81; Nd ? 64 или Nd = 81.
Аналогично Саша ответил Наташе оба раза «да». Существует только 2 куба больше 25 – 27 и 64, значит в одном из этих домов живет Наташа.
Именно поэтому она и подумала, что Саша живет по другому адресу.
Учитывая, что деле Ns > 50, Ns ? 64 и ? 81, получаем Nd = 81, Nn = 64, Ns > 50, Ns < 64. Перебором находим, что Ns = 55 (81 + 64 + 55 = 2х 102).
Получается, что номер дома Даши 81, Наташи – 64, а Саши – 55.
Опечатка
Условие
В одном из учебников по математике написано, что наибольшее известное простое число – это разность 23021377 – 1.
Не опечатка ли это?
Подсказка: попробуйте найти последнюю цифру этого числа.
Ответ
Это опечатка. Любая степень числа, оканчивающегося на 1, тоже оканчивается на 1. Поэтому разность 23021377 – 1 оканчивается на 0 и, следовательно, не является простым числом.
Торт
Условие
Хозяйка купила торт. К ней может прийти или 10, или 11 гостей.
На какое наименьшее число кусков ей необходимо заранее разрезать торт, чтобы его можно было поделить поровну как между 10, так и между 11 гостями?
Подсказка: если придут 10 гостей, каждый должен получить не меньше 2 кусков, иначе торт невозможно было бы разделить поровну на 11 человек.
Ответ
Хозяйке следует разрезать торт на 20 кусков. Докажем сначала, что разрезать торт меньше, чем на 20 кусков, не удастся. Если придут
10 человек, то каждый из них должен получить не меньше 2 кусков. В самом деле, в противном случае один из 10 гостей получил бы 1 кусок и 1/10 часть торта, а если бы пришло
11 гостей, то этот кусок нужно было бы дополнительно разрезать.
Таким образом, количество кусков не меньше, чем 2 ? 10 = 20.
Покажем, что 20 кусков торта хватит всем гостям. Разрежем торт на 10 кусков по 1/11 части и на 10 кусков по 1/110 части. Если придут 10 гостей, то каждый получит один большой кусок и один маленький – всего 1/11 + 1/110 = 1/10. Если же придут 11 человек, то 10 из них получат по 1 большому куску, а 1 человек – 10 маленьких кусков.
Рулетка
Условие
Пьер никогда не проигрывает в рулетку больше 4 раз подряд и никогда не ставит на кон больше 20 долларов.
Каким образом он может выиграть 1000 долларов, если в случае выигрыша в рулетку возвращается удвоенная ставка и в самом начале игры у Пьера есть 100 долларов?
Подсказка: Пьер может делать ставки таким образом, чтобы выигрыш приходился на ставки, размеры которых больше предыдущих проигрышей. Для этого следует увеличить ставку после проигрыша.