Мы и её величество ДНК | страница 9
Опыт, который я описал, надеюсь, убедил самых недоверчивых читателей в том, что Мендель был превосходным экспериментатором. Но он оказался и замечательным теоретиком.
Прежде всего Мендель понимал, что растения не могут передать свои признаки потомкам иначе, как через половые клетки. Спермий и яйцеклетка у животных, пыльцевое зерно и семяпочка у растений — вот передаточные этапы. Попутно он сделал еще несколько открытий. Так, например, в точном опыте Мендель доказал, что для опыления семяпочки достаточно одного-единственного пыльцевого зерна. Если бы, кроме этого, он больше ничего не дал науке, то и тогда имя его сохранилось бы в биологии.
Не зная ничего о материальных носителях наследственности, Мендель тем не менее был уверен в их существовании. Каждый из признаков, передающийся потомкам, имеет в клетке свой собственный наследственный задаток или задатки — это главная из его гипотез, в дальнейшем полностью подтвердившаяся.
А вот теперь перейдем к формулам, открытым Менделем. Не нужно пугаться: как все по-настоящему гениальное, они просты. Вернемся к скрещиванию Горохов с гладкими и угловатыми семенами, но только признаки эти (а значит, и наследственные задатки) обозначим, как делал это и Мендель, латинскими буквами. Гладкие семена — доминантный признак — обозначим А. Угловатые семена — рецессии — пусть будут а.
Мы могли бы записать скрещивание вот так:
Р: А × а
Однако у родителей тоже были родители, у каждого по два, и от каждого они получили наследственные задатки (Мендель брал проверенные семена, не гибридные). Это мы выразим, изменив запись таким образом:
Р: АА × аа
Запись означает, что у того из родителей, который имел гладкие семена, в свою очередь были два гладкосеменных родителя, и, наоборот, угловатосеменное растение происходило от двух растений с угловатыми семенами.
Каким будет первое поколение (F>1)?
Каждое из растений получит по одному наследственному задатку от каждого из родителей (от одного А, от другого а).
F>1 (первое поколение) состоит из гибридов: Аа, Аа. Правда, по внешности все они гладкосеменные, однако по происхождению резко отличаются от гладкосеменных растений из родительского поколения.
Чтобы получить второе поколение, скрещивают растения F>1 между собой:
F1 : Аа × Аа
Тут возникает сложность, которую мы легко разъясним, потому что знаем больше того, что знал Мендель.
Ему же пришлось создать гениальнейшую из всех его гипотез: гипотезу чистоты гамет.
Перед скрещиванием растение образует половые клетки — гаметы. В опытах Менделя наследственные задатки не изменялись, не смешивались, не исчезали — в неизменном виде передавались они из поколения в поколение. Именно это позволило Менделю предположить, что гибридными могут быть только организмы. Гаметы же (половые клетки) всегда чисты, т. е. несут только один наследственный задаток из пары, в нашем случае или