Зеркальные болезни. Рак, диабет, шизофрения, аллергия | страница 47



. Во многих случаях это количество энергии есть то же самое, что и поверхностная энергия, тесно связанная с поверхностным натяжением как жидкостей, так и твердых тел. Технические и биологические материалы, которые используются в условиях растяжения и в этом смысле являются относительно безопасными, для образования новой поверхности при разрушении требуют значительно большей энергии. Другими словами, работа разрушения для них значительно (несравненно!) больше, чем в случае хрупких твердых тел. Для практически вязкого трещиностойкого материала величина работы разрушения обычно лежит в пределах 1—10 Дж/м>2. Поэтому энергия, требуемая для разрушения клеточной мембраны, должна быть в миллион раз больше энергии, требуемой для разрушения в таком же поперечном сечении стекла или керамики. Если в процессе нагружения разорвется только одна межатомная связь, то энергия, требуемая для образования новой поверхности, увеличится в миллионы раз, что, как мы видели, и имеет место в действительности. Молекулы, находящиеся вдали от поверхности разрушения, способны, таким образом, поглощать энергию и вносить свой вклад в сопротивление разрушению. Значит ли все это, что энергия, которая потребовалась для формирования первичной клеточной мембраны, была в миллионы раз больше, чем кулоновские силы? Мы уже высказывали мысль, что для возникновения Жизни требуется энергия, сопоставимая с ядерным взрывом. Какой материал способен отвечать этим поистине космическим требованиям? Это напрямую относится к эластину, воде, коллагену и их укладке. По крайней мере их поведение и структура в Живом указывают на это. Эти материалы способны заделывать бреши в поверхности тела и внутри организма, чаще в виде рубца. Эмбрион может восстанавливать до определенного момента свою целостность, но потом рубец остается на всю жизнь. Возле краев заживающей раны коллагена нет, он появляется позже, для того чтобы «сшить» края окончательно. Когда на живой ткани возникает порез в результате травмы или под действием скальпеля, на первой стадии процесса заживления на заметных расстояниях вокруг раны коллагеновые волокна временно исчезают. Только после того, как полость раны заполняется эластином, коллагеновые волокна образуются вновь, и восстанавливается полная первоначальная прочность ткани. Этот процесс может продолжаться 3 или 4 недели, и пока он не закончится, величина работы разрушения ткани в окрестности раны чрезвычайно мала. Поэтому если в течение двух-трех недель после хирургической операции требуется вновь вскрыть зашитую полость, в этом месте бывает трудно наложить надежные швы. Поведение коллагена странное — он то появляется, то исчезает, то чего-то ждет. Это неспроста. Его поведение зависит от общего состояния внутренних и внешних поверхностей, а также от всей архитектоники организма. Коллаген — основа всей соединительной ткани. Следовательно, разрыв в какой-то части всей «бесконечной сети» мгновенно вычисляется и участок прорыва сразу берется под контроль. Тромбоциты реагируют на его «голос» и устремляются в место прорыва «трубы» под названием кровеносные сосуды, которые армированы коллагеном и эластином. В раковых опухолях сосуды двухслойные. Это говорит, прежде всего, о том, что рак — это двумерная, вернее, двухслойная (возможно даже одномерная) жизнь из кубических сингоний. Во-вторых, коллаген в них «дефективный» и неправильно закрученный. Необходимо глубже изучить строение раковых сосудов. Это также поможет в лечении. Правильно растущий и хорошо распределенный коллаген — залог здоровья и молодости. Растет он за счет витамина C, проколлагена, гиалуроновой кислоты, а скорость роста зависит от синтеза аминокислот и правильности их укладки в общей цепи. Каждая третья аминокислота в его цепи — это нечувствительный к свету глицин. В состав наряду с глицином входят и светочувствительный триптофан, и другие незаменимые аминокислоты. При нарушении сборки и порядка укладки в пространстве правый коллаген начинает выстраивать сам себя. Напомню, что в норме коллаген закручен влево. Этот процесс выглядит как организация бесформенных быстрорастущих филаментов. Благо модуль Юнга раковых протеинов крайне велик, и этим обусловлено их гуковское поведение. Они просто прошивают нежные здоровые ткани и даже кости так, как захотят. Это, по сути, и есть истинный рак. Когда в его «сетях» поселяются одноклеточные, можно говорить уже о раковом симбиоте. Строение большинства тканей животных очень сложное, чаще всего они являются составными (композитными) и включают, по крайней мере, два компонента. В их состав входит сплошная фаза или матрица, в которой распределены армирующие ее прочные нити или волокна из другого вещества. Во многих случаях эта сплошная фаза содержит эластин, который имеет очень малый модуль Юнга. Другими словами, по своим упругим свойствам эластин лишь на одну ступеньку отличается от жидкостной пленки с поверхностным натяжением. Эластин, однако, армирован прочными зигзагообразными волокнами коллагена, представляющего собой разновидность протеина — вещества, близкого к веществу сухожилий и имеющего большой модуль Юнга и почти гуковское поведение. Зигзагообразность коллагена подобна укладке миелиновых фигур. Подобное строение очень подходит и для клеточной мембраны. Вследствие того, что армирующие волокна сильно перекручены, они вносят очень малый вклад в сопротивление материала растяжению при малых деформациях, и упругое поведение материала в этом случае весьма близко к поведению эластина. Однако по мере того, как композитная ткань вытягивается, коллагеновые волокна постепенно становятся все более туго натянутыми и, таким образом, модуль Юнга материала в растянутом состоянии будет определяться модулем Юнга коллагена. Роль коллагеновых волокон не сводится только к увеличению жесткости ткани при больших деформациях, они, по-видимому, нужны и для того, чтобы обеспечить «вязкость» ткани, т. е. ее трещиностойкость. А рак в этом смысле и есть трещина в организме. Вышеназванные данные по поведению материалов указывают на то, что эластин, как и коллаген, принимает непосредственное участие в перерождении тканей. Нарушения анизотропии не только в коже, но во всем организме приводят к болезням, старению и смерти. Исследователям стоит обратить пристальное внимание на феномен анизотропии, как элемент дуализма в живых организмах. Судя по поведению клеточных мембран при раке, коллаген в области поражения либо отсутствует, либо имеет другую структуру. Нарушения структуры коллагена происходят по вине ксенобиотиков на нижних этажах. Гидроксилирование пролиновых и лизиновых остатков в полипептидных цепях проколлагена происходит одновременно со сборкой цепей. В этом процессе участвуют молекулярный кислород и альфа-кетоглутарат, а в качестве кофакторов — ион двухвалентного железа и аскорбиновая кислота. Все три вещества, кислород, железо и аскорбиновая кислота, «теряются» в процессе озлокачествления тканей. В раковых тканях мало кислорода. Аскорбиновая кислота в синтезе коллагена принимает непосредственное участие, и ее недостаток предрасполагает к развитию рака.