Современная космология: философские горизонты | страница 61
Правда, все эти достижения покупаются достаточно высокой ценой. Приходится вводить большое количество новых физических понятий, таких как суперсимметрия, дополнительные размерности пространства (в последнем варианте теории их 10, в то время как обычное пространство-время имеет только 4 измерения), бесконечное число полей с произвольными массами и спинами и т. д. До сих пор ни одна из этих сущностей не была обнаружена в эксперименте. Все это говорит о том, что теория суперструн представляет собой интересную гипотезу, но отнюдь не хорошо обоснованную теорию.
Существующие уровни энергии, которыми оперируют в физике элементарных частиц, недостаточны для того, чтобы получить данные для проверки любого из выдвинутых подходов к квантовой теории гравитации, в том числе и теории струн. В сентябре 2008 г. в ЦЕРН’е запущен новый кольцевой ускоритель — Большой адронный коллайдер (БАК). Есть надежды, что полученная на нем энергия частиц — она будет находиться в тетрадиапазоне (диапазон энергий, когда сталкиваются две частицы с суммарной энергией 1 тетраэлектронвольт — 10>12 эв.), будет достаточна для того, чтобы подтвердить или опровергнуть многие из предположений, выдвинутых в физике элементарных частиц.
Однако многие специалисты считают, что полученной энергии не «хватит» для экспериментальной проверки теории суперструн: она слишком далека от требуемой. Нужны планковские уровни энергии (10>28 эв). В связи с этим физики ищут косвенные подтверждения. Например, через подтверждение суперсимметрии — существование которой следует из теории суперструн. Если бы удалось обнаружить частицы-суперпартнеры, которые предполагаются концепцией суперсимметрии, это было бы важным доказательством того, что теория суперструн находится на верном пути. Большие надежды в этом плане возлагают также на те данные, которые получают в современной космологии, изучающей процессы и условия, существовавшие в момент Большого взрыва. Процессы, происходившие в то время, являются природной лабораторией, в которой можно получать подтверждения (или опровержения) теории струн. «Не обладая ускорителями, способными разгонять частицы до энергий порядка планковской, мы будем вынуждены постоянно опираться на данные экспериментов «космологического ускорителя» Большого взрыва — на то, что разбросано этим взрывом по всей Вселенной», — пишет уже цитировавшийся специалист в области теории суперструн Брайан Грин.
Таким образом, пока авторы и приверженцы теории суперструн рассчитывают только на косвенные подтверждения. У этой теории нет прямого экспериментального гида, как это было при создании и КМ, и стандартной модели физики элементарных частиц. (У квантовой механики, например, в качестве такого гида выступали данные спектрального анализа, с объяснением которых классическая электродинамика не справлялась. Квантовая теория блестяще объяснила характер спектров, что явилось одним из ее подтверждений). Но это не столько недостаток самой теории суперструн, сколько результат того, что наука «забралась» слишком далеко, и «копает» слишком глубоко.