Закрученные пассажи: Проникая в тайны скрытых размерностей пространства | страница 35



Двумерный мир, в котором оказалась во сне Афина, был очень похож на вселенную садового шланга. Так как у Афины были возможности становиться как большой, так и малой относительно ширины 2D-ленда, она могла наблюдать эту вселенную как с точки зрения кого-то большего по размерам, по сравнению со вторым измерением этой вселенной, так и с точки зрения кого-то меньшего по размерам. Для большой Афины 2D-ленд и 1D-ленд выглядели полностью одинаковыми. Только маленькая Афина могла указать на различие. Так и во вселенной садового шланга существо будет находиться в полном неведении относительно дополнительного пространственного измерения, если не станет достаточно маленьким, чтобы его увидеть.

Вернемся к вселенной Калуцы — Клейна, у которой есть три известных нам пространственных измерения и дополнительное невидимое измерение. Чтобы обдумать ситуацию, можно опять использовать рис. 16. В идеале, мне следовало бы нарисовать четыре пространственных измерения, но, к сожалению, это невозможно (не поможет даже книжка-раскладушка с объемными разворотами). Однако, поскольку три бесконечных измерения, образующих наше пространство, качественно одинаковы, мне нужно реально нарисовать только одно типичное измерение. Это позволяет мне использовать другое измерение, чтобы представить невидимое дополнительное измерение. Показанное здесь другое измерение свернуто и этим оно фундаментально отличается от трех других.

Точно так же как в примере с двумерной вселенной садового шланга, четырехмерная вселенная Калуцы — Клейна с одним крохотным свернутым измерением будет казаться нам имеющей на одно измерение меньше, чем те четыре, которые есть на самом деле. Так как мы ничего не можем знать о дополнительном пространственном измерении, пока не сумеем получить свидетельство о его структуре в крохотном масштабе этого измерения, вселенная Калуцы — Клейна будет казаться трехмерной. Свернутые или компактифицированные дополнительные измерения никогда не будут обнаружены, если их масштабы достаточно малы. Позднее мы исследуем вопрос, насколько они должны быть малы, однако сейчас достаточно понимать, что планковская длина находится далеко за порогом измеримости.

В жизни и в физике мы регистрируем только те детали, которые действительно для нас важны. Если вы не можете наблюдать детальную структуру, вы можете с тем же успехом считать, что ее нет. В физике это пренебрежение локальными деталями реализуется в идее эффективной теории, о чем шла речь в предыдущей главе. Все, что имеет значение в эффективной теории, — это вещи, которые вы можете реально воспринимать. В приведенном выше примере мы будем использовать трехмерную эффективную теорию, в которой подавлена информация о дополнительных измерениях.