Веселые задачи. Две сотни головоломок | страница 54
и 2 стакана уравновешиваются 3 блюдцами. На основании второго взвешивания, каждую бутылку мы можем заменить 1 стаканом и 1 блюдцем. Получив, что 4 стакана и 2 блюдца уравновешиваются 3 блюдцами.
Сняв с каждой чашки весов по 2 блюдца, узнаем, что 4 стакана уравновешиваются 1 блюдцем.
И следовательно, бутылка уравновешивается (сравни со вторым взвешиванием) 5 стаканами.129. Порядок отвешивания таков. На одну чашку кладут молоток, на другую – гирю и столько же сахарного песка, чтобы чашки уравновесились; ясно, что насыпанный на вторую чашку песок весит 900–500 = 400 г. Эту операцию выполняют еще три раза; остаток песка весит 2000 – (4 × 400) = 400 г. Теперь нужно содержимое каждого из пяти полученных 400-граммовых пакетов разделить пополам, на два равных по весу пакета. Делается это без гирь, очень просто: содержимое 400-граммового пакета рассыпают в два блюдца, поставленные на разные чашки, до тех пор, пока весы не уравновесятся.
130. Если бы заказанный венец был сделан из чистого золота, он весил бы вне воды 100 кг, а под водой терял 20-ю долю этого веса, т. е. полкилограмма. В действительности же венец, как мы знаем, теряет в воде не 1/2, а 10 – 91/4 = 3/4 кг. Это происходит потому, что он содержит серебро – металл, теряющий в воде не 20-ю, а 10-ю долю своего веса. Значит, серебра в венце столько, что венец теряет в воде не 1/2 кг, а 3/4 кг – на 1/4 кг больше. Если в нашем чисто золотом венце мысленно заменить 1 кг золота серебром, то венец будет терять в воде на 1/10 – 1/20 = 1/20 кг больше, чем прежде. Следовательно, чтобы увеличить потерю веса на требуемую величину – 1/4 кг, необходимо заменить серебром столько килограммов золота, сколько раз 1/20 кг содержится в 1/4 кг. Поскольку 1/4: 1/20 = 5, получаем: в венце вместо выданных 2 кг серебра и 8 кг золота 5 кг серебра и 5 кг золота. Три килограмма золота мастер заменил серебром и утаил.
Задачи с квадратами
131. Пруд
Имеется квадратный пруд (рис. 134). По углам его, близ самой воды, растет 4 старых развесистых дуба. Пруд понадобилось расширить: сделать вдвое больше по площади, сохранив квадратную форму. Но вековые дубы трогать не хотят. Можно ли расширить пруд до требуемых размеров так, чтобы все 4 дуба, оставаясь на своих местах, оказались на берегах нового пруда?
Рис. 134. Задача о пруде. 132. Паркетчик