Русские толкования | страница 34



, единственный в своем роде, он же другой, отличный от всех (само слово иной общего происхождения с один, праслав. *jьпъ(jъ): *еd-inъ), некто и никто. Иное двойственно, в нем сходятся крайности: 13 «несчастное число» (ПРН, с. 556), чертова дюжина, но недюжинный человек, изрядный, а не рядовой, тоже ведь 13-ый, как Василиса Премудрая в одном случае или Иисус Христос над двенадцатью апостолами, caput omnium ipse tertius decimus, у Кассиодора (X. Майер и Р. Сунтруп, Сл. числ. знач., стб. 647), вот и Набоков назвал один свой сборник Nabokov's Dozen: 13 Stories, а 5-лепестковый цветочек сирени — «счастье». О неполноте и сверхполноте ср. Ян Гонда, Избыт, недост.; к мифологии чисел см. В. Топоров, Числ. арх. и статью Числа в МНМ 2, ср. его же Число и текст.

Круглое число, например знакомые и значимые для нас с детства сказочные числа 3, 7, 12, 40 или «пальцевые» числа 5, 10 и 20, обязано своим названием кругу как ряду, за последним членом которого снова идет первый. Вот пословица про неделю, по-блатному круглую/круглуху: «Осьмой день что первый» (Сл. блат., с. 118, и ПРН, с. 556); в Сказке Набокова тринадцатая избранница героя оказалась первой, круг замкнулся. Правда, в представлении числа камешками, ср. латинское calculus «(счетный) камешек», 3 будет треугольным числом, но 10 = 1 + 2 + 3 + 4 тоже, как 4 и 9 будут квадратными, и тогда удобнее название «полное». Круглое число назначено приобщать счетное, множественное к единому, это оно служит единицей при счете и становится основанием счисления (не наоборот, вопреки популярной брошюре С. Фомина Сист. счисл., § 1 сл.). Будем различать считающее лицо, предмет счета — количество («сколько штук», предмет собственно счета) или величину («сколько раз», предмет измерения), единицу счета — круглое число, вырастающее в систему счисления, и итог — точное число, число как таковое. Единица не число, ведь (натуральное) число имеет дело со множественностью членов ряда, частей целого, а «Один раз /одновá не в счет» (ПРН, с. 549 и 556), единица способна обозначать само целое. И двойка не вполне число, иначе языкам не нужно было бы особое двойственное число в отличие от множественного и слово «оба» в отличие от слова «все». А судя по окончаниям русских форм 1 брат, 2–3 — 4 брата и 5 итд. братьев, настоящие числа начинаются с 5. Нуль, 1 и 2 — эти числа, вернее нечисла, способны каждое по-своему обозначать иное, как ничто, как одно и как другое или двойственное, а 3 наименьшее круглое и просто наименьшее (натуральное) число. Об одном как целом см. В. Топоров,