Движение. Теплота | страница 31



, то дополнительный вес равен . Значит, весы покажут вес mg + . Ускорение кончилось, и лифт движется равномерно – пружина вернулась в исходное положение и показывает 1 кГ веса. Приближаемcя к верхнему этажу, движение лифта замедляется. Что будет теперь с пружиной весов? Ну, конечно, теперь груз весит меньше одного килограмма. При замедлении движения лифта вектор ускорения смотрит вниз. Значит, дополнительная, фиктивная сила тяжести направлена вверх, в сторону, противоположную направлению земного тяготения. Теперь a отрицательно, и весы показывают величину, меньшую mg. После остановки лифта пружина возвращается в исходное положение. Начнем спуск. Движение лифта ускоряется; вектор ускорения направлен вниз, значит, дополнительная сила тяжести направлена вверх. Сейчас груз весит меньше килограмма. Когда движение станет равномерным, дополнительная тяжесть пропадет, и перед окончанием нашего путешествия на лифте – при замедленном движении вниз – груз будет весить больше килограмма.



Неприятные ощущения, испытываемые при быстром ускорении и замедлении движения лифта, связаны с рассмотренным изменением веса.

Если лифт падает с ускорением, то тела, находящиеся в нем, становятся как бы легче. Чем больше это ускорение, тем больше потеря веса. Что же произойдет при свободном падении системы? Ответ ясен: в этом случае тела перестанут давить на подставку – перестанут весить: сила притяжения Земли будет уравновешиваться дополнительной силой тяжести, существующей в такой свободно падающей системе. Находясь в таком «лифте», можно спокойно положить на плечи тонну груза.

В начале этого параграфа мы описывали жизнь «без веса» в межпланетном корабле, вышедшем за пределы сферы тяготения. При равномерном и прямолинейном движении в таком корабле веса нет, но то же самое происходит и при свободном падении системы. Значит, нет нужды выходить за пределы сферы тяготения: веса нет во всяком межпланетном корабле, который движется с выключенным двигателем. Свободное падение приводит к потере веса в подобных системах. Принцип эквивалентности привел нас к выводу о почти (см. примечание на стр. 56) полной равноценности системы отсчета, движущейся прямолинейно и равномерно вдали от действия сил притяжения, и системы отсчета, свободно падающей под действием тяжести. В первой системе веса нет, а во второй «вес книзу» уравновешивается «весом кверху». Никакой разницы между системами мы не найдем.