Как работает радиолампа. Классы усиления - Сергей Александрович Бажанов

Бесплатно читаем книгу Как работает радиолампа. Классы усиления - Сергей Александрович Бажанов без сокращений! Чтобы читать полную версию, не нужна регистрация на сайте. Помните, что чтение доступно как на компьютере, так и на Андроиде, Айфоне и любом другом телефоне.
Как работает радиолампа. Классы усиления - Сергей Александрович Бажанов

Сергей Александрович Бажанов - Как работает радиолампа. Классы усиления о чем книга


Загадочная и завораживающая книга, которая перенесет вас в мир историй и приключений, полный неожиданных поворотов и фантастических миров. Ее страницы наполняются живыми персонажами, каждый из которых несет свой неповторимый след в плетении сюжета. В этой книге вы найдете мудрость, вдохновение и множество важных уроков жизни. Взлетите на крыльях воображения и отправьтесь в увлекательное путешествие между ее строками, где мир становится вашим собственным волшебным приключением.

Читать онлайн бесплатно Как работает радиолампа. Классы усиления, автор Сергей Александрович Бажанов


1. КАК РАБОТАЕТ РАДИОЛАМПА.

Ознакомление с историей изобретения радиолампы возвращает нас к 1881 г., когда известный изобретатель Томас Эдисон обнаружил явление, положенное впоследствии в основу действия почти каждой радиолампы. Занимаясь опытами, целью которых было улучшение первых электрических ламп, Эдисон ввёл внутрь стеклянной колбы лампы металлическую пластинку, расположив её поблизости от накаливаемой угольной нити. Эта пластинка совершенно не соединялась с нитью внутри колбы (фиг. 1). Металлический стержень, на котором держалась пластинка, проходил сквозь стекло наружу. Чтобы нить не перегорела, воздух из колбы лампы был выкачан. Изобретатель был весьма удивлён, заметив отклонение стрелки электроизмерительного прибора, включённого в проводник, соединяющий между собой металлическую пластинку с положительным полюсом (плюсом) батареи накала нити. Исходя из обычных по тому времени представлений, нельзя было ожидать появления тока в цепи «пластинка — соединительный провод — плюс батареи», так как эта цепь незамкнута. Тем не менее ток по цепи проходил. Когда же соединительный провод подключили не к плюсу, а к минусу батареи, ток в цепи пластинки прекращался. Эдисон не смог дать объяснения открытому им явлению, которое вошло в историю радиолампы под названием эффекта Эдисона.

Фиг. 1. Явление Эдисона


Объяснение эффекту Эдисона было дано гораздо позже, уже после того, как в 1891 г. Стонеем и Томсоном были открыты электроны — мельчайшие отрицательные заряды электричества. В 1900–1903 гг. Ричардсон предпринял научные исследования, результатом которых явилось опытное и теоретическое подтверждение вывода Томсона о том, что раскалённая поверхность проводников испускает, эмиттирует электроны. Оказалось, что способ нагревания проводника безразличен: раскалённый на горящих углях гвоздь эмиттирует электроны (фиг. 2) так же, как и накаливаемая электрическим током нить электрической лампы. Чем выше температура, тем более интенсивна электронная эмиссия. Ричардсон глубоко исследовал электронную эмиссию и предложил формулы для расчёта количества эмиттируемых электронов. Им же было установлено, что будучи нагретыми до одинаковой температуры, разные проводники эмиттируют электроны в различной степени, что было приписано структурным свойствам этих проводников, т.е. особенностям их внутреннего строения. Повышенными эмиссионными свойствами отличаются цезий, натрий, торий и некоторые другие металлы. Этим впоследствии воспользовались при конструировании интенсивных эмиттеров электронов.

Вы автор?
Жалоба
Все материалы размещаются на сайте его пользователями.
Если Ваша книга была опубликована без Вашего ведома и/или без Вашего согласия, пожалуйста, напишите нам, и мы в срочном порядке примем меры.